# **Supporting Information**

# Hyaluronic Acid Layered Chimeric Nanoparticle: Targeting MAPK-PI3K Signaling Hub in Colon Cancer Cells

Sandeep Palvai,<sup>†</sup> Meenu Mahesh Kuman,<sup>†</sup> Poulomi Sengupta,<sup></sup> Sudipta Basu<sup>†\*</sup>

† Indian Institute of Science Education and Research (IISER) Pune, Department of Chemistry, Dr. Homi Bhabha Road, Pashan, Pune, India, 411008

Ψ CSIR-National Chemical Laboratory, Physical Chemistry Division, Dr. Homi Bhabha Road, Pashan, Pune, India, 411008 and Academy of Scientific & Innovative Research (AcSIR)

\* Corresponding author: Email: <u>sudipta.basu@iiserpune.ac.in</u>

# **Content:**

Page S2. Characterization of cholesterol-AZD6244 and cholesterol-FITC conjugates.

*Page S3.* <sup>1</sup>H and <sup>13</sup>C NMR spectra of cholesterol-AZD6244 conjugate (Figure S1, S2).

Page S4. <sup>19</sup>F NMR and MALDI-TOF spectra of cholesterol-AZD6244 conjugate (Figure S3, S4).

Page S5. DLS, zeta potential and EDX of chimeric nanoparticle (Figure S5, S6).

Page S6. Drug calibration graph, loading and stability of HA-CNPs (Figure S7, S8).

Page S7. Synthetic scheme and <sup>1</sup>H NMR spectra of cholesterol-FITC conjugate (Figure S9, S10).

Page S8. <sup>13</sup>C NMR and MALDI-TOF spectra of cholesterol-FITC conjugate (Figure S11, S12).

Page S9. DLS of FITC-CNP, HA-FITC-CNP and drug release profile of HA-CNPs (Figure S13, S14).

Page S10. Quantification of fluorescence intensity and protein expression (Figure S15, S16).

Page S11. MTT assay and volume colocalization quantification from CLSM (Figure S17, Table S1).

#### Characterization of cholesterol-AZD6244 conjugate (3):

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  = 8.91 (s, 1H), 8.23 (s, 1H), 8.00 (s, 1H), 8.05 (s, 1H), 7.49 (d, *J* = 2.2 Hz, 1H), 7.16-7.18 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.55 - 6.52 (m, 1H), 5.35 (s, 1H), 4.59 (s, 2H), 4.23 (m, 2H), 3.93 (s, 3H), 2.66 (s, 2H), 2.39 (s, 1H), 2.29 (d, *J* = 7.6 Hz, 2H), 2.01– 1.8 (m, 4H), 1.57 - 1.41 (m, 14H), 1.25 (m, 3H), 1.11 (m, 7H), 0.99 (s, 4H), 0.85 - 0.92 (m, 10H), 0.67 (s, 3H).

<sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>):**  $\delta$  = 172.34, 147.37, 139.70, 139.62, 131.69, 130.23, 124.96, 122.97, 122.46, 117.99, 116.26, 116.22, 111.29, 109.52, 77.16, 74.88, 73.98, 62.37, 59.67, 56.83, 56.27, 50.15,

42.46, 39.86, 39.66, 38.30, 38.20, 37.07, 36.72, 36.33, 35.94, 32.04, 31.98, 31.78, 31.39, 29.85, 29.64, 29.61, 28.37, 28.17, 27.87, 24.42, 23.97, 22.97, 22.71, 21.16, 19.43, 18.86, 11.57.

### <sup>19</sup>**F NMR (376 MHz, CDCl3):** δ = -129.16

**MALDI-TOF (m/z):** Calculated mass = 924.3604 for  $C_{48}H_{63}BrClFN_4O_6$ , observed = 925.4789 for  $C_{48}H_{64}BrClFN_4O_6$  [M+H]<sup>+</sup>.

## Characterization of FITC-Cholesterol conjugate (8):

<sup>1</sup>**H NMR (400 MHz, MeOD):**  $\delta$  = 7.80 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.16 - 7.23 (m, *J* = 16.4, 8.8 Hz, 3H), 6.57 (s, 1H), 6.55 (s, 3H), 5.22 (s, 1H), 3.81 - 3.68 (m, 2H), 3.46 - 3.35 (m, *J* = 6.5 Hz, 2H), 2.23 (s, 1H), 2.02 (s, 1H), 1.96 - 1.77 (m, 4H), 1.78 - 1.64 (m, 2H), 1.63 - 1.47 (m, *J* = 6.9 Hz, 3H), 1.47 - 1.33 (m, 8H), 1.33 - 1.24 (m, 3H), 1.22 - 1.08 (m, 5H), 0.99 -0.84 (m, 14H), 0.68 (s, 3H).

<sup>13</sup>**C NMR (101 MHz, MeOD):**  $\delta$  = 182.81, 180.80, 173.47, 160.16, 160.11, 141.44, 132.93, 132.80, 126.46, 126.36, 123.67, 123.52, 123.49, 114.46, 114.37, 104.60, 104.51, 100.95, 75.74, 58.59, 58.19, 57.83, 51.71, 49.00, 47.21, 45.12, 43.69, 41.31, 40.90, 39.95, 38.31, 37.76, 37.60, 37.37, 35.52, 33.99, 33.31, 33.02, 29.53, 29.35, 25.49, 25.24, 24.36, 23.40, 23.15, 22.30, 19.93, 19.48, 12.50.



MALDI-TOF (m/z): Calculated mass = 861.4387 for C<sub>51</sub>H<sub>63</sub>N<sub>3</sub>O<sub>7</sub>S, observed = 862.73 for C<sub>51</sub>H<sub>64</sub>N<sub>3</sub>O<sub>7</sub>S [M+H]<sup>+</sup>.





Figure S1: <sup>1</sup>H NMR spectra of cholesterol-AZD6244 conjugate (3).



**Figure S2:** <sup>13</sup>C NMR spectra of cholesterol-AZD6244 conjugate (3).



Figure S3: <sup>19</sup>F NMR spectra of cholesterol-AZD6244 conjugate (3).



**Figure S4:** MALDI-TOF spectra of cholesterol-AZD6244 conjugate (3).



**Figure S5:** (a) Hydrodynamic diameter and (b) zeta potential of chimeric nanoparticle (CNP) determined by dynamic light scattering (DLS).



**Figure S6:** Energy-dispersive X-ray spectroscopy (EDX) of HA-CNPs to validate the presence of AZD6244 and cisplatin in the same particle.



**Figure S7:** (a-c) Concentration versus absorbance calibration graph of AZD6244, PI103 and cisplatin at  $\lambda_{max}$  = 273 nm, 296 nm and 706 nm respectively from UV-Vis spectroscopy. (d) Loading of AZD6244, PI103 and cisplatin in HA-CNPs determined by UV-Vis spectroscopy from concentration versus absorbance calibration graph.



**Figure S8:** Stability of HA-CNPs was evaluated through DLS by measuring (a) hydrodynamic diameter (b) poly-dispersity index (PDI) and (c) surface charge in DMEM media containing 10 % FBS at 37 °C over 7 days.



Figure S9: Synthetic scheme of FITC-cholesterol conjugate (8).



Figure S10: <sup>1</sup>H NMR spectra of FITC-cholesterol conjugate (8).



Figure S11: <sup>13</sup>C NMR spectra of FITC-cholesterol conjugate (8).



Figure S12: MALDI-TOF spectra of FITC-cholesterol conjugate (8).



**Figure S13:** (a, c) Hydrodynamic diameter of FITC-CNP and HA-FITC-CNP; (b,d) zeta potential of FITC-CNP and HA-FITC-CNP determined by DLS measurements.



**Figure S14:** Time dependent release of AZD6244, PI103 and cisplatin from HA-CNP at (a) pH = 5.5 and (b) pH = 7.4.



**Figure S15:** Quantification of green fluorescence intensity in HCT-116 cells after treatment with endocytosis inhibitors followed by HA-FITC-CNPs, determined from CLSM.



**Figure S16:** Quantification of the expression of (a) *p*-ERK1/2, (b) *p*-Akt and (c) PARP from Western blot analysis in HCT-116 cells after treatment with HA-CNPs for 24 h.



**Figure S17:** Concentration dependent cell viability of (a) HA-AZD-CDDP-NPs, (b) HA-AZD-PI103-NPs, (c) HA-PI103-CDDP-NPs in HCT-116 cells after 24 h determined by MTT assay. (d) Concentration dependent cell viability of HA-CNPs in L929 fibroblast cells at 24 h post treatment determined by MTT assay.

| Treatment | Image Channels           |                                     |                                         |                                   |
|-----------|--------------------------|-------------------------------------|-----------------------------------------|-----------------------------------|
| Time (h)  | C1 (red), C2 (green)     |                                     |                                         |                                   |
|           | Pearson's<br>Correlation | Manders Coefficients                |                                         | Percent volume<br>co-localization |
|           | Coefficient              | M1 (fraction of C1 over-lapping C2) | M2 (fraction of C2 over-<br>lapping C1) |                                   |
| 1         | 0.9741                   | 0.8997                              | 0.9126                                  | 77.3                              |
| 3         | 0.9476                   | 0.6499                              | 0.6676                                  | 40.62                             |
| 6         | 0.978                    | 0.7521                              | 0.7966                                  | 23.44                             |

**Table S1:** Quantification of homing of FITC-HA-CNPs into lysosomes stained with LysoTracker Red from CLSM.