Supporting Information

Iron^{III} half salen catalysts for atom transfer radical and ring opening polymerizations

Eszter Fazekas, a Gary S. Nichol, a Jennifer A. Garden*, a Michael P. Shaver* a

^aEaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.

E-mail: michael.shaver@ed.ac.uk, j.garden@ed.ac.uk

<u>Contents</u>

1.	¹ H NMR spectra of ligands L2,L4-L6, L8	3
2.	HRMS spectra of complexes C2, C4-C6, C8	6
3.	¹ H NMR spectra of crude polymerization reaction mixtures	8
4.	¹ H NMR spectrum of purified pMMA	10
5.	Tacticity evaluation via ¹ H NMR spectroscopy	10
6.	Typical GPC chromatograms of purified polymer samples	11
8.	MALDI-ToF spectrum of a typical PLA sample	13
9.	X-ray data for complexes C5, C6 and C8	14
10.	References	14

1. ¹H NMR spectra of ligands L2,L4-L6, L8

Figure S2 ¹H NMR spectrum of L4 in $CDCl_3$ at 20°C.

Figure S3 ¹H NMR spectrum of L5 in CDCl₃ at 20°C.

Figure S4 ¹H NMR spectrum of L6 in $CDCl_3$ at 20°C.

Figure S5 ¹H NMR and ¹³C spectra of L8 in CDCl₃ at 20°C.

2. HRMS spectra of complexes C2, C4-C6, C8

Figure S6 HRMS peak of C2.

Figure S7 HRMS peak of C4.

Figure S8 HRMS peak of C5.

Figure S9 HRMS peak of C6.

Figure S10 HRMS peak of C8.

Figure S11 Typical ¹H NMR spectrum of a styrene ATRP crude reaction mixture in $CDCl_3$ at 20°C. Conversion was determined via integration of the multiplet polymer peak 2.2-1.2 ppm against the =CH₂ styrene (starting material) peak at 5.31 and 5.81 ppm.

Figure S12 Typical ¹H NMR spectrum of a methyl methacrylate ATRP crude reaction mixture in $CDCl_3$ at 20°C. Conversion was determined via integration of the CH_3 polymer (product) peak at 3.64 ppm against the CH_3 methyl methacrylate (starting material) peak at 3.79 ppm.

Figure S13 Typical ¹H NMR spectrum of a *rac*-lactide ROP crude reaction mixture in CDCl₃ at 20°C. Conversion was determined via integration of the CH-CH₃ polymer (product) peak 5.28-5.40 ppm against the CH-CH₃ lactide (starting material) peak at 4.90-4.92 ppm.

4. ¹H NMR spectrum of purified pMMA

Figure S14 Typical ¹H NMR spectrum of a purified pMMA sample, showing olefin terminated polymer chains formed *via* CCT.

5. Tacticity evaluation via ¹H NMR spectroscopy

Figure S15 Methine region of a typical homonuclear decoupled ¹H NMR spectrum of a purified PLA sample. The tacticity (P_i values) of the polymer samples were evaluated using the method proposed by Coates and Ovitt.¹

6. Typical GPC chromatograms of purified polymer samples

Figure S16 Typical GPC chromatogram of a polystyrene sample formed by catalyst C7.

Figure S17 Typical GPC chromatogram of a pMMA sample formed by catalyst C1.

Figure S18 Typical GPC chromatogram of a PLA sample formed by catalyst C3.

7. Additional data for lactide polymerization

Table S1 Polymerization of rac-lactide with complexes **C1, C5** and **C8** and additives propylene oxide (PO) or butylene oxide (BO).

			[Fe] / PO ───► toluene		, , ,	
-	Entry	Complex	Additive (PO/Fe)	T (°C)	time (h)	Conv. (%)
	1	C8	1	120	24	3
	2	C8	5	120	24	4
	3	C8	20	120	24	5
	4	C8	50	120	24	89
	5	C8	50	85	24	<1
	6	C5	50	120	2	15
	7	C5	50	120	2	28
	8	C5	50	120	2	28
	9	C5	50	120	2	49
	10	C1	50 BO	120	2	40
	11	C1	50 BO	120	2	39
	12	C1	50 BO	120	2	22

Conditions: [lactide]:[Fe]:[PO] = 100:1:50, lactide concentration in toluene = 1 M, 120°C. Conversion was determined using ¹H NMR spectra of crude reaction mixtures. $M_{n,th [Fe]} = [lactide]_0/[Fe] \times M(lactide) \times conversion$.

8. MALDI-ToF spectrum of a typical PLA sample

Figure S19 Typical MALDI spectrum of a PLA sample showing the two series peaks with lactide (144.10) and lactic acid (72.05) repeat units.

Figure S20 Zoomed in MALDI spectrum of a PLA sample showing the series of peaks corresponding to the α -OCH(Me)CH₂Cl/ ω -H end groups (red) and the α -OCH(Me)CH₂OH/ ω -H end groups (blue), with Na⁺ as the cation.

9. X-ray data for complexes C5, C6 and C8

To establish the degree of trigonal bipyramidal character of the complexes, the τ value by Addison *et al.* was calculated for each complexes ($\tau = 0$ for perfectly square pyramidal and $\tau = 1$ for perfectly trigonal bipyramidal geometries).²

C5 CCDC 1868412, $\tau = (177.44 - 121.00)/60 = 0.94$

C6 CCDC 1868413, $\tau = (173.7 - 121.10)/60 = 0.87$

C8 CCDC 1868414, $\tau = (169.98 - 130.3)/60 = 0.66$

Table S2: Crystallographic data and refinement details for C5, C6 and C8.

Compound	C5	C6	C8
Formula	$C_{32}H_{48}CIFeN_2O_2$	$C_{54}H_{76}CIFeN_2O_2$	$C_{32}H_{24}CI_{10}Fe_2N_4O_4$
$D_{calc.}$ / g cm ⁻³	1.184	1.127	1.712
ℤ/mm⁻¹	4.654	3.106	1.488
Formula Weight	584.02	876.46	994.75
Colour	dark red	black	black
Shape	block	plate	block
Size/mm ³	0.21×0.07×0.04	0.14×0.07×0.04	0.38×0.27×0.20
Т/К	120.0	120.0	120.0
Crystal System	orthorhombic	orthorhombic	triclinic
Space Group	Pbca	Fdd2	<i>P</i> -1
a/Å	26.4228(3)	32.8617(2)	10.2859(3)
b/Å	14.61318(18)	32.6742(2)	13.7432(4)
<i>c/</i> Å	33.9282(4)	19.24030(10)	15.0395(4)
₽/°	90	90	110.704(3)
₽/°	90	90	95.752(2)
₽/°	90	90	99.856(2)
V/Å ³	13100.4(3)	20658.9(2)	1929.33(10)
Ζ	16	16	2
Ζ'	2	1	1
Wavelength/Å	1.54184	1.54184	0.71073
Radiation type	CuK₂	CuK₂	MoK₂
⊵ _{min} /°	3.694	3.816	2.716
≥ _{max} /°	76.167	76.086	29.763
Measured Refl.	205663	82834	43240
Independent Refl.	13685	10148	9868
Reflections with I > 2(I)	11358	9510	8584
R _{int}	0.1256	0.0818	0.0359
Parameters	746	563	473
Restraints	3	1	0
Largest Peak	0.704	0.400	0.357
Deepest Hole	-0.675	-1.094	-0.348
GooF	1.027	1.057	1.052
Flack parameter		0.006(4)	
wR ₂ (all data)	0.1528	0.1501	0.0648
wR ₂	0.1434	0.1473	0.0616
R1 (all data)	0.0685	0.0598	0.0379
<i>R</i> ₁	0.0565	0.0567	0.0301

10. References

(1) Ovitt, T. M.; Coates, G. W., Stereoselective ring-opening polymerization of rac-lactide with a single-site, racemic aluminum alkoxide catalyst: Synthesis of stereoblock poly(lactic acid). *J. Polym. Sci. A* **2000**, *38*, 4686-4692.

(2) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C., Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2[prime or minute]-yl)-2,6-dithiaheptane]copper(II) perchlorate. *Dalton Trans.* **1984**, 1349-1356.