Electroformation of giant unilamellar vesicles on stainless steel electrodes

Valerio Pereno[†], Dario Carugo^{†,‡}, Luca Bau[†], Erdinc Sezgin[§], Jorge Bernardino de la Serna^I, Christian Eggeling[§] and Eleanor Stride^{*†}

[†]Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom

^{*}Mechatronics and Bioengineering Science research groups, Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, United Kingdom

[§]Wetherall Institute of Molecular Medicine, Department of Immunology, University of Oxford, Oxford, OX3 9DS, United Kingdom

¹Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Harwell-Oxford, OX11 0FA, United Kingdom

Supporting Information.

The cost of the Pt wires was calculated from the price of two 200 mm Ø0.8mm electrodes from Goodfellow, UK obtained on 22 October 2014 (£292). The cost of the injection needles was calculated on 8* 21G 50mm Ø0.8mm needles from Becton, Dickinson and Company, UK. The price of ITO covered glass electrodes was calculated on an equivalent surface area of 8 needles, using the price of ITO square glass slides (~25 mm x 25 mm) from Sigma-Aldrich, UK.

The following table details the full cost breakdown of the custom-built electroformation chamber used in the experiments.

Table S1. Cost breakdown details on the items, materials and costs of the components of the electroformation chamber. Prices were obtained 14/12/2016.

Item	Manufacturer Price per item		Total price (£)
Delrin block	theplasticshop	9.75	9.75
Brass screws	RS Components	0.116	2.08
Brass nut	Westfield Fasteners	0.0058	1.04
Brass sheet	Macc Models	0.408	0.816
Tota	13.69		

Limit of detection of oxidized DOPC

The limit of detection of oxidized lipids was estimated as the ratio of the concentration of an oxidized DOPC reference in CDCl₃ corresponding to a peak height of the aldehyde proton (9.75 ppm) equal to three times the baseline noise, and the concentration of DOPC in a typical analytical sample (340 μ M). The concentrations were calculated using benzoic acid (Sigma Aldrich, UK) as an internal standard.

The oxidized reference was synthesized by photooxidation of 1 mL of a 10 mg/mL solution of DOPC in oxygen saturated CD₃OD in the presence of $[Ru(bpy)_3]^{2+}$ immobilized on a

Dowex 50WX2 resin (50-100 mesh, 0.6 meq/mL, 4% [Ru(bpy)₃]²⁺ loading) prepared according to a literature procedure.¹ A glass vial containing the resin and the DOPC solution was sealed and left to rotate on a rotator while illuminated with a fluorescent lamp (49315 FML27/65 GX10q-4, Eiko) from a distance of 10 cm. After 48 hours the solution was filtered and the resin was rinsed with methanol and chloroform. The solvent was removed with a nitrogen stream to afford a colorless oil that was dried under vacuum, redissolved in CDCl₃ and used without further purification. The ¹H-NMR spectrum shows the presence of secondary oxidation products (including the aldehyde used to estimate the limit of detection), presumably from the decomposition of hydroperoxides, and hydrolysis products.

Unilamellarity experiments data

Experiment	Pre-quenching	Quenched	Lysed	Unilamellarity
1	72.6	50.5	24.0	0.545
2	96.0	60.0	24.4	0.497
3	112	67.3	24.0	0.495

Table S2. Fluorescence measurements and calculations for fluorescence quenching assay.

Photograph of GUV electroformation chamber

Figure S1. Photograph of a GUV electroformation chamber containing nine pairs of needles and nine chambers.

References

(1) Buell, S. L.; Demas, J. N. Heterogeneous Preparation of Singlet Oxygen Using an Ion-Exchange-Resin-Bound tris(2,2'-bipyridine)ruthenium(II) Photosensitizer. J. Phys. Chem. 1983, 87, 4675–4681.