## Supporting Information for

## Supramolecular Peptide Nanofibers Engage Mechanisms of Autophagy in Antigen-presenting Cells

Jai S. Rudra<sup>1,3,#,\*</sup>, Arshad Khan<sup>5,#</sup>, Tara M. Clover<sup>1</sup>, Janice J. Endsley<sup>2,3</sup>, Andrew Zloza<sup>4</sup>, Jin Wang<sup>5</sup>, and Chinnaswamy Jagannath<sup>6</sup>

<sup>1</sup>Department of Pharmacology & Toxicology, <sup>2</sup>Department of Microbiology and Immunology, <sup>3</sup>Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd, Route 0617, Galveston, TX 77555 USA

<sup>4</sup>Division of Surgical Oncology, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, RM 3035, New Brunswick, NJ 08903 USA

<sup>5</sup>Immunobiology and Transplant Science Center, Houston Methodist Research Institute, 6565 Fannin St, Houston, TX 77030 USA

<sup>6</sup>Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, PO Box 20708, Houston, TX 77030 USA

Key Words: antigen, autophagy, peptide nanofiber, self-assembly, vaccine

<sup>#</sup>Both authors contributed equally

\*Corresponding Author Jai S. Rudra, Ph.D. Department of Pharmacology and Toxicology, Sealy Center for Vaccine Development, 301 University Blvd, Basic Sciences Building 3.308, Galveston, TX 77555 E-mail address: jarudra@utmb.edu

## **Table of Contents**

| Fig S1. Antigen presentation in BCG-infected dendritic cells      | .S3   |
|-------------------------------------------------------------------|-------|
| Fig. S2 Antigen presentation in macrophages without BCG infection | \$3   |
| Fig. S3 Inhibition of autophagy in macrophages using Bafilomycin  | S4    |
| Fig. S4 Inhibition of autophagy in Atg7-/- dendritic cells        | S4    |
| Fig. S5 Autophagy dependent IL-2 production by NapFFK nanofibers  |       |
| Fig. S6 TEM and CD data for OVA-KFE8 peptide                      |       |
| Fig. S7 HPLC and mass spectra for peptides used in the study      | S6-S8 |



**Figure S1.** Peptide antigens linked to self-assembling domains are more effectively presented by DCs compared to soluble antigen. IL-2 production by BB7 cells (T cells recognizing the Ag85B epitope) presented on BCG-infected DCs treated with KFE8-Ag85B is significantly higher compared to soluble Ag85B at two different doses tested (n=2 replicates/group).



**Figure S2.** Enhanced antigen-presentation and higher IL-2 production is observed in macrophages treated with KFE8-Ag85B compared to macrophages treated with soluble Ag85B peptide even without BCG infection (n=4 replicates/group). . \*p<0.05 by students t-test (n=3 replicates/group).



**Figure S3.** Addition of autophagy inhibitors 3-MA and bafilomycin leads to reduced IL-2 production by macrophages treated with KFE8-Ag85B. A reduction in IL-2 levels was also observed in macrophages treated with soluble Ag85B peptide in the presence of bafilomycin (n=2 replicates/group).



**Figure S4.** Antigenic-processing and presentation of self-assembling peptide nanofibers by DCs involves autophagy. Data demonstrating that IL-2 production is significantly reduced in Atg7-/-DCs treated with KFE8-Ag85B nanofibers and overlaid with BB7 cells. Interestingly, Atg7-/-DCs treated with soluble Ag85B also exhibited similar behavior. \*p<0.05 by students t-test (n=3 replicates/group).



**Figure S5.** Data demonstrating higher IL-2 production in M $\Phi$ s treated with NapFFK-Ag85B nanofibers compared to soluble antigen Ag85B and significant reduction of IL-2 in Atg5-/- M $\Phi$ s treated with NapFFK-Ag85B nanofibers. \*p<0.05 by students t-test (n=3 replicates/group).



**Figure S6.** Nanofibers of KFE8 (A) and KFE8-OVA (B) as observed using TEM. Scale bar = 100 nm. Circular dichrosim spectra of KFE8 and OVA-KFE8 indicating transition from a cross-beta structure to pure beta-sheet (C). Peptide concentration was 0.75 mM in ultrapure water.



(i)

![](_page_6_Figure_0.jpeg)

![](_page_6_Figure_1.jpeg)

(iii)

![](_page_7_Figure_0.jpeg)

**Figure S7.** HPLC and mass spectra for peptides used in the study. (i) OVA peptide, Cal'd 963.1 Da, Obs'd 963.3 Da, purity >90%. (ii) Ag85B peptide, Cal'd 1581.66 Da, Obs'd 15812.12 Da, purity >90%. (iii) Nap-Ag85B peptide, Cal'd 2558.7 Da, Obs'd 2558.45 Da, purity >80%. (iv) KFE8-Ag85B peptide, Cal'd 3104.4 Da, Obs'd 3103.87 Da, purity >80%. (v) OVA-KFE8 peptide, Cal'd 2485.87 Da, Obs'd 2485.83, purity >80%.