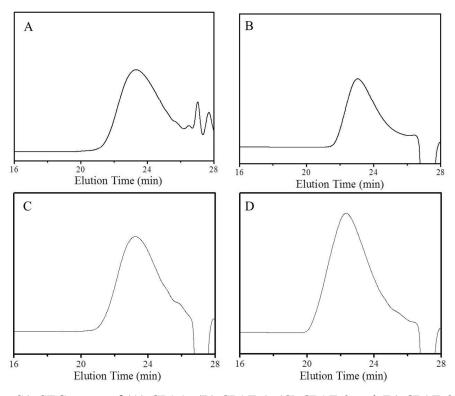
Scarless Wound Closure by Mussel-Inspired Poly(amidoamine) Tissue Adhesive with Tunable Degradability


Bo Peng,^{1,3} Xinyi Lai, ¹ Lei Chen, ² Xuemei Lin, ¹ Chengxin Sun, ¹ Lixin Liu, ^{1,*} Shaohai Qi, ^{2,*} Yongming Chen, ^{1,*} Kam W. Leong ³

^{1.} Center of Functional Biomaterials, School of Material Science and Engineering, Sun Yat-sen University; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, Guangdong, China

^{2.} Department of Burns Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China

^{3.} Department of Biomedical Engineering, Columbia University, New York, NY 10025, USA

KEYWORDS: Adhesive; Dopamine; Poly(amidoamine); Wound healing; Zwitterionic polymer

Figure S1. SEC traces of (A) CPAA, (B) CPAE-1, (C) CPAE-2 and (D) CPAE-3 in DMF.

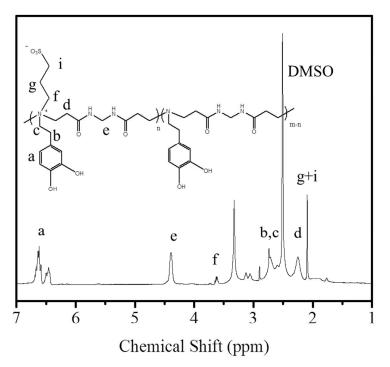
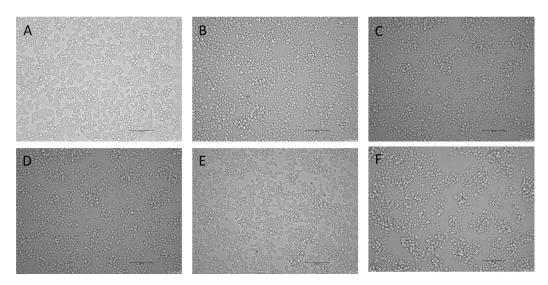



Figure S2. ¹H NMR spectrum of CPAA-ZS-53 in DMSO-d6.

Figure S3. Microscope images of RAW264.7 cells grew on (A) CPAA-ZS-11; (B) CPAA-ZS-15; (C) CPAA-ZS-18; (D)CPAA-ZS-21; (E) CPAA-ZS-34; (F) CPAA-ZS-53 coated 24-well plate.