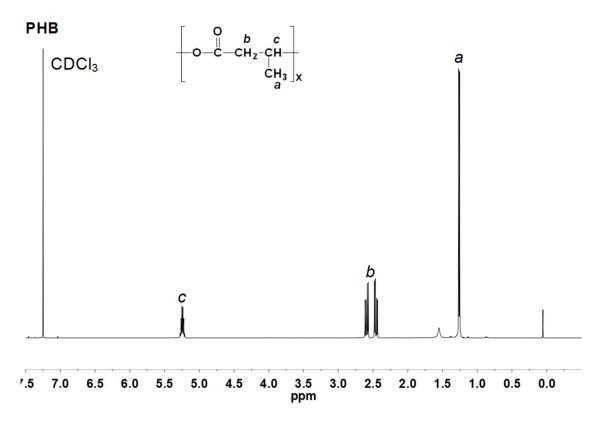
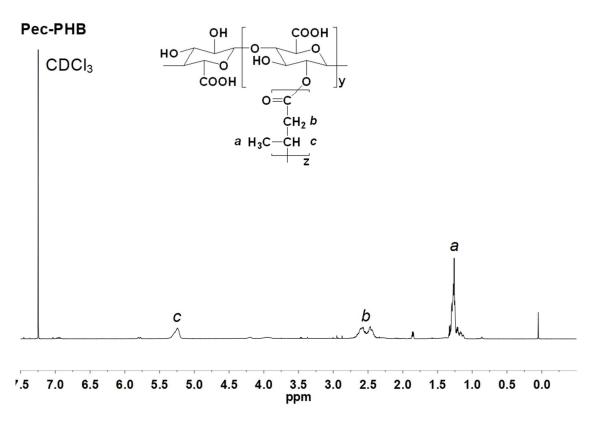
Supporting Information

Electrospun pectin-polyhydroxybutyrate nanofibers for retinal tissue engineering Siew Yin Chan^{a, b}, Benjamin Qi Yu Chan^{b, c}, Zengping Liu^d, Bhav Harshad Parikh^d, Kangyi Zhang^b, Qianyu Lin^{b, c}, Xinyi Su^{d, e, f, g}, Dan Kai^b, Wee Sim Choo^{a*}, David James Young^{a, b, h*}, and Xian Jun Loh^{b, c, g*}


- ^a School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- ^b Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- ^c Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- ^d Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- ^e Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- ^f Department of Ophthalmology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- ^g Singapore Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore 168751, Singapore
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast,
 Maroochydore DC, Queensland 4558, Australia

Corresponding authors* and emails:


Wee Sim Choo: choo.wee.sim@monash.edu

David James Young: dyoung1@usc.edu.au

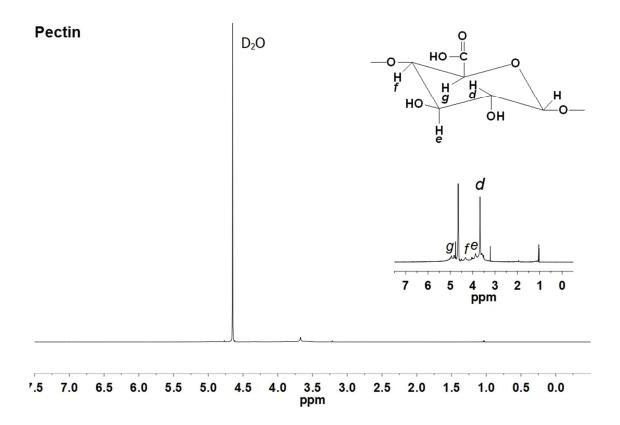

Xian Jun Loh: lohxj@imre.a-star.edu.sg

Figure S1. ¹H NMR (500 MHz) spectrum of PHB.

Figure S2. ¹H NMR (500 MHz) spectrum of pec-PHB.

Figure S3. ¹H NMR (500 MHz) spectrum of pectin.

Table S1. Thermal properties of the precursors (pectin and PHB) and of copolymer, pec-PHB.

Sample	Thermal Decomposition Temperature, T_d^A (°C)	Residue ^B (%)	Glass Transition Temperature, $T_g^{\ \ C}$ (°C)	Melting	Heat of	Degree of
				Temperature, T_m^{C}		Crystallinity, X_c^{D}
				(°C)	(J/g)	(%)
Pectin	245.61	27.69	34.78	-	-	-
РНВ	288.44	1.11	8.69	160.98	76.96	52.71
Pec-	246.26	15.31	-15.41	<u>-</u>	_	_
PHB						

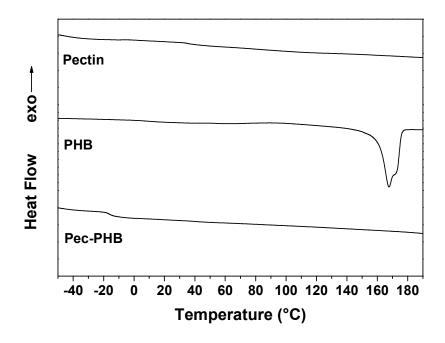
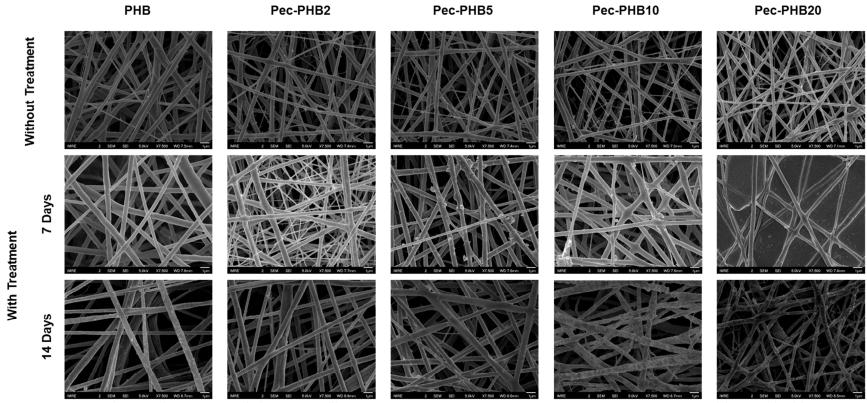
^A T_d is defined as the temperature at which the mass of the sample has a 15% weight loss, determined from the peak of derivative weight curve by TGA. ^B Residue is defined as the mass percentage of the sample at 500 °C, determined from TGA. ^C T_g , T_m and ΔH_m were deduced from the second heating curve by DSC. T_m was taken as peak maxima. ΔH_m was determined from the endothermic melting peak. ^D X_c was calculated using the following equation:

$$X_c = \frac{\Delta H_m}{\Delta H_m^O} \times 100\%$$

where ΔH_m^0 is a reference value which represents the heat of melting for 100% crystalline PHB, 146 J/g.¹

Reference

1. Barham, P. J.; Keller, A.; Otun, E. L.; Holmes, P. A., Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. *Journal of Materials Science* **1984**, *19* (9), 2781-2794.

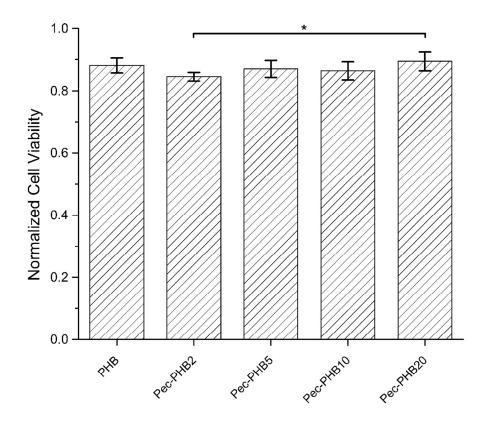

Figure S4. DSC curves of the precursors (pectin and PHB) and of copolymer, pec-PHB.

Figure S5. SEM micrographs (7500X) of electrospun fibres (PHB, pec-PHB2, pec-PHB5, pec-PHB10, pec-PHB20) without and with treatment (incubated in PBS solution (pH 7.4) at room temperature and lightly shaken at 150 RPM for 2 weeks) for 7 days and 14 days.

The different blends of our PHB/pec-PHB nanofibers were incubated in PBS solution (pH 7.4) at room temperature and lightly shaken at 150 RPM for 2 weeks with PHB nanofiber as the control. PBS solutions were changed every 2 days. SEM images of the nanofibers were acquired on

a weekly basis and revealed that the macrostructure of the fibre matrices remained intact in all cases. Incubating of the nanofibers in PBS solutions (pH 7.4 and pH 12.0) at 37 °C indicated complete solubilisation after approximately 2 months at the higher pH and 3 months at pH 7.4 Nanofibers with the higher pec-PHB content degraded faster under these conditions.

Figure S6. Cell viability of NIH/3T3 fibroblasts on PHB and pec-PHB nanofibers after 72 hrs. Readings are normalized to tissue culture plastic. (N = 6 | solid line: p < 0.05).

Pec-PHB nanofibers were cultured with NIH/3T3 fibroblasts for 72 hrs and resazurin assay was performed to compare biocompatibility of the various nanofibers. Pec-PHB nanofibers present cell viabilities of 85% and above, comparable to that of pristine PHB. One-way ANOVA (Tukey post hoc test) at 5% level revealed that the means of pec-PHB2 and pec-PHB20 were significantly different, indicating higher pec-PHB content improved the cell viability. Overall, pec-PHB nanofibers were found to be non-cytotoxic and biocompatible.