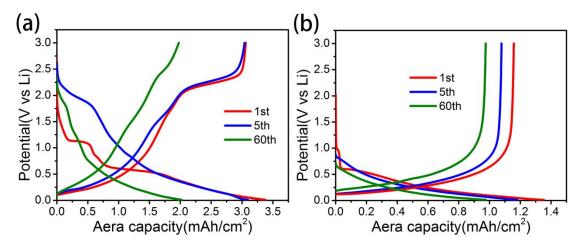
Supplementary Information

Graphene-like MoS₂ nanosheets on carbon fabrics as high performance binder-free electrode for supercapacitors and Li-ion batteries

Hong Yin^{1,#}, Yuan Liu^{1,#}, Neng Yu², Hong-Qing Qu¹, Zhitian Liu³, Renzhi Jiang¹, Chong Li^{1,*}, Ming-Qiang Zhu^{1,*}

1. Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

2. Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang, 330013, P. R. China


School o Materials Science & Technology Wuhan Institute of Technology, Wuhan,
4302054, China

*Corresponding Authors

E-mail: mqzhu@hust.edu.cn; chongli@hust.edu.cn

[#]These authors contributed equally to the work.

Charge/discharge profiles of MoS₂/carbon fabrics

Figure S1. Charge/discharge profiles of MoS₂/carbon fabrics (a) and pure carbon fabrics (b).

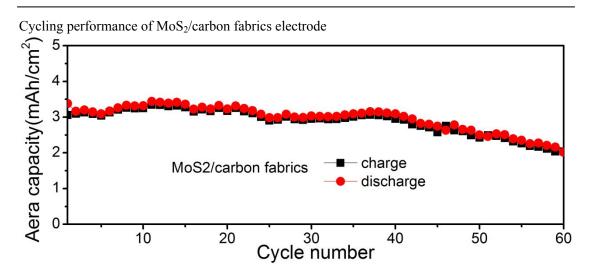


Figure S2. Cycling performance of $MoS_2/carbon$ fabrics electrode at the current density of $0.2mA/cm^2$. The charge/discharge potential range is 0.01 to 3V.

Charge/discharge profiles of pure carbon fabrics

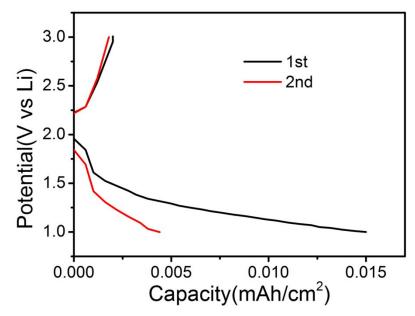


Figure S3. Charge/discharge profiles of pure carbon fabrics between 1 V to 3V.