Supporting Information for:

All Thiophene-Based Double Helix: Synthesis, Crystal Structure, Chiroptical Property and Arylation

Bingbing Li,[†] Sheng Zhang,[†] Lu Li,^{*,‡} Zhiying Ma,[†] Chunli Li,[†] Li Xu[§] and Hua Wang^{*,†}

[†] Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
[‡] School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
[§] College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China

Table of Contents:

NMR, HRMS and IR Spectra of DH-1	1
NMR, HRMS and IR Spectra of DH-1-Br	3
NMR, HRMS and IR Spectra of DH-1-Ph	5
NMR, HRMS and IR Spectra of DH-1-Th	7
Resolution of rac-DH-1	9
Table S1. X-ray crystallographic data of DH-1	9
Figure S18. Calculated absorption spectra of DH-1, DH-1-Ph and DH-1-Th	10
Table S2. Theoretical calculations	11

NMR, HRMS and IR Spectra of DH-1

Figure S2. ¹³C NMR (CDCl₃, 100 MHz) spectrum of DH-1

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

(MS)

Instrument: IonSpec 4.7 Tesla FTMS

Card Serial Number: WI13 2069

Sample Serial Number: zs-3-187-col-pp

Operator : HuaQin Date: 2013/10/16

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass: Target m/z = 940.0261 ± 0.004 Charge = +1

Possible Elements: ot Mass: Min: Max

Flement	Exact mass.	IVIIII.	TVICIA.
C	12.000000	0	100
Ĥ	1.007825	0	100
Si	27.976927	0	5
S	31.972071	0	9

Additional Search Restrictions: DBE Limit Mode = Both Integer and Half-Integer Minimum DBE = 0

Search Results:

Number of Hits = 5

m/z	Delta m/z	DBE	Formula
940.02602	0.00008	55.0	C64H20Si2S3+1
940.02466	0.00144	28.0	C47H40Si4S7+1
940.02803	-0.00193	23.0	C44H44Si4S8+1
940 02939	-0.00329	50.0	C61H24Si2S4+1
940.02265	0.00345	60.0	C ₆₇ H ₁₆ Si ₂ S ₂ ⁺¹

Figure S4. IR spectrum of DH-1

NMR, HRMS and IR Spectra of DH-1-Br

^{90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} *Figure S6.* ¹³C NMR (CDCl₃, 100 MHz) spectrum of **DH-1-Br**

Figure S8. IR spectrum of DH-1-Br

NMR, HRMS and IR Spectra of DH-1-Ph

Figure S10. ¹³C NMR (CDCl₃, 100 MHz) spectrum of **DH-1-Ph**

LBB-5-11: HRMS (ESI) m/z calcd for C68H61S8Si4+ (M+H)+ 1245.16105, found

Figure S11. HRMS spectrum of DH-1-Ph

Figure S12. IR spectrum of DH-1-Ph

NMR, HRMS and IR Spectra of DH-1-Th

Figure S14. ¹³C NMR (CDCl₃, 100 MHz) spectrum of **DH-1-Th**

LBB-5-13: HRMS (ESI) m/z calcd for C60H53S12Si4+ (M+H)+ 1268.98673, found

Figure S15. HRMS spectrum of DH-1-Th

Figure S16. IR spectrum of DH-1-Th

Resolution of *rac***-DH-1**

Figure S17. HPLC spectra of (a) *rac*-**DH-1**, (b) (-)-**DH-1** and (c) (+)-**DH-1** (*n*-hexane/isopropanol (99.5:0.5, v/v), flow rate: 1.0 mL/min).

Table S1. X-ray crystallographic data of DH-1

Identification code	DH-1
Empirical formula	$C_{46}H_{46}C_{16}S_8Si_4\\$
Formula weight	1180.37
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 11.9267(15) \text{ Å}$ $\alpha = 108.373(2) ^{\circ}.$
	$b = 15.095(2) \text{ Å} \qquad \beta = 105.652(2) ^{\circ}.$
	$c = 17.872(2) \text{ Å} \qquad \gamma = 101.258(2)^{\circ}.$
Volume	2798.7(6) Å ³
Z, Calculated density	2, 1.401 Mg/m ³
Absorption coefficient	0.723 mm ⁻¹
F(000)	1216
Crystal size	$0.33 \times 0.21 \times 0.17 \text{ mm}$
Theta range for data collection	1.54 to 25.00 °.
Limiting indices	-13<=h<=14, -17<=k<=17, -21<=l<=21
Reflections collected / unique	14179 / 9774 [R(int) = 0.0263]

Completeness to theta $= 25.00$	99.20%
Max. and min. transmission	0.8869 and 0.7963
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9774 / 36 / 577
Goodness-of-fit on F ²	1.079
Final R indices [I>2sigma(I)]	R1 = 0.0658, wR2 = 0.1598
R indices (all data)	R1 = 0.0855, wR2 = 0.1708
Largest diff. peak and hole	1.806 and -1.899 e. Å ⁻³

Figure S18. Calculated absorption spectra of **DH-1**, **DH-1-Ph** and **DH-1-Th** in dichloromethane solution using TDDFT/PCM approaches.

Table S2. The peaks position (nm, experimental values in parentheses) of the predicted UV-vis spectra and computational absorption energies (λ , nm), oscillator strength (*f*), and transition nature and the square of transition dipole moment between the excited-state and ground-state(μ_{eg}^2).

	Peaks position	states	λ (nm)	f	Transition contributions	$\mu_{\mathrm{eg}}{}^{2}$
	231 (231)	$S_0 \rightarrow S_{37}$	233.7	0.1013	HOMO-6 \rightarrow LUMO+3(10%)	0.7700
					HOMO-4 \rightarrow LUMO+3(36%) HOMO-1 \rightarrow LUMO+6(21%)	0.7798
DH-1	282 (281)	$S_0 \rightarrow S_7$	283.5	1.0098	HOMO-1→LUMO+3(37%)	9.4248
					HOMO→LUMO+2(58%)	
	347 (344)	$S_0 \rightarrow S_2$ 34	346.9	0.0424	HOMO-1→LUMO+1(45%)	0.4842
			510.5		HOMO→LUMO(53%)	
DH-1-Ph	245 (239)	$S_0 \rightarrow S_{47}$	247.6	0.1845	HOMO-15→LUMO(14%)	1.5042

					HOMO-11→LUMO(26%)	
					HOMO-1→LUMO+8(17%)	
		$S_0 \rightarrow S_{48}$	246.6	0.1856	HOMO-11→LUMO+1(18%)	1.5065
					HOMO→LUMO+8(18%)	
					HOMO-11→LUMO+2(23%)	
		$S_0 \rightarrow S_{59}$	239.3	0.111	HOMO-11→LUMO+3(33%)	0.8747
					HOMO-9→LUMO+5(15%)	
		0.0	211.0	0.7275	HOMO-4→LUMO+2(65%)	7 4(91
	200 (297)	$S_0 \rightarrow S_8$	311.8	0.7275	HOMO-4→LUMO+3(30%)	/.4681
	300 (286)	$S_0 \rightarrow S_{11}$	297.2	0.4558	HOMO-5→LUMO+2(94%)	4.4600
		$S_0 \rightarrow S_{14}$	293.2	0.3934	HOMO-5→LUMO+1(80%)	3.7968
		0.0	262.0	0.1640	HOMO-2→LUMO (53%)	1.0(9)
		$S_0 \rightarrow S_2$	362.8	0.1648	HOMO-2→LUMO+1(42%)	1.9080
		$S_0 \rightarrow S_{48}$	250.3	0.1818	HOMO-9→LUMO+6(41%)	1.4978
					HOMO-8→LUMO+7(27%)	
	250 (239)				HOMO-9→LUMO+6(14%)	
		$S_0 \rightarrow -S_{51}$	247.7	0.1519	HOMO-10→LUMO+8(13%)	1.2389
					HOMO-10→LUMO+9(19%)	
	300 (286)				HOMO-4→LUMO+2(25%)	
		$S_0 \rightarrow S_8$	314.8	0.5206	HOMO-5→LUMO+3(48%)	5.3948
DH-1-Th					HOMO-3→LUMO+2(23%)	
					HOMO-5→LUMO+1(45%)	
		$S_0 \rightarrow S_{10}$	303.6	0.2401	HOMO-5→LUMO+3(15%)	2.3998
					HOMO-3→LUMO+2(16%)	
		$S_0 \rightarrow S_{14}$	295.8	0.5026	HOMO-5→LUMO+2(93%)	4.8947
					HOMO-2→LUMO(24%)	
		$S_0 \rightarrow S_2$	368.0	0.1663	HOMO-3→LUMO+1(49%)	2.0142
					HOMO-1→LUMO (22%)	