Supporting Information

Graphene Oxide Coated Surface: Inhibition of Bacterial Biofilm Formation due to Specific Surface-Interface Interactions

Nisha Yadav,^a Amrita Dubey,^b Swapnil Shukla,^a Chetan Prakash Saini,^c Govind Gupta,^d Richa Priyadarshini,^b* and Bimlesh Lochab^a*

^aDepartment of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.

^bDepartment of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.

^cDepartment of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.

^d Physics of Energy Harvesting, TEC Building, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110 012, India.

TABLE OF CONTENTS

1. Digital images of GO coated well plates of different GO solid content loading ----- S3

2. AFM (3D) images of GO_H and GO_I films and representative height distribution ----- S4

3. Hydrodynamic mean diameter and size distribution of GO_H and GO_I -----S5

4. Quantitative analysis of antibacterial activity of GO_H coated surface against *E. coli* bacterial biofilm formation -----S6

5. 3D AFM images of *E. coli* and *S. aureus* cells after incubation with GO₁ coated substrate ------ S7

6. Images of contact angle measurements using MilliQ water in contact with (a) polystyrene (PS) substrate (control), (b) GO_H coated on PS and (c) GO_I coated on PS---- S8

7. Invitro glutathione oxidation induced by GO nanomaterials ---- S9

8. Antimicrobial activity of GO_H and GO_I with different concentration ------ S10

9. Spot assay representing antimicrobial activity of GO_I and GO_H on (a) *E. coli* and (b) *S. aureus*-----S11

10. Table-1. A series of different GO solid content-----S12

11. Table-2. Surface thickness measurement of GO_H and GO_I coated surface using surface profilometer----S13

12. Table-3. XRD data and XPS deconvoluted percentage component of GO_H and GO_I -----S14

13. Table-4. Comparison of our GO coated substrate with previously reported literature in terms of percentage inhibition at the respective concentration. -----S15

14. References-----S16

Increasing GO content

Increasing GO content

Figure S1. Digital images of GO coated well plates of different GO solid content loading.

Figure S2. AFM imaging Graphene Oxide (GO_H and GO_I) deposited on a Si substrate and corresponding Rq values (a) 3D-AFM images (b) Sheet height distribution.

Figure S3. Hydrodynamic mean diameter and size distribution of GO_H and GO_I .

Figure S4. Quantitative analysis of antibacterial activity of GO_H coated surface against *E*. *coli* bacterial biofilm formation. Graphical representation of percentage biofilm inhibition in *E. coli*. Data represented here shows statistical difference (p-value < 0.05) between the GO_H treated and control sample.

Figure S5. 3D AFM images of *E. coli* and *S. aureus* cells after incubation with GO_I coated substrate. The control without GO nanosheets showed a dense biofilm formation, while GO_I coated substrate showed a few cell colony of bacteria formation within the porous channels of GO-coated substrate and localized within the channels.

Figure S6. Images of contact angle measurements using MilliQ water in contact with (a) polystyrene (PS) substrate (control), (b) GO_H coated on PS and (c) GO_I coated on PS.

Figure S7. *Invitro* glutathione oxidation induced by GO nanomaterials: 50 μ g/mL and 100 μ g/mL of GO_H and GO_I were incubated with 0.8 mM glutathione under for 3 h. H₂O₂ (1 mM) represents positive control.

Figure S8. Antimicrobial activity of GO_H and GO_I . *E. coli* and *S. aureus* cells were incubated with different concentration (50 µg/mL and 100 µg/mL) of GO_H and GO_I . Error bars in the figure represents standard deviation.

Figure S9. Spot assay representing antimicrobial activity of GO_I and GO_H at 50 µg/mL and 100 µg/mL (a) *E. coli* and (b) *S. aureus*.

	GO solid content	GO	H ₂ O
	(µg)	(2 mg/mL)	(µl)
		(μl)	
S11	60	30	220
	90	45	205
	120	60	190
	150	75	175
	180	90	160
	200	100	150

Table S1: A series of different GO solid content (ranging from 60 μ g to 200 μ g) was prepared from the stock aqueous suspension of respective GO (2 mg/mL) onto 96-well plate. The volume of solvent was kept constant (250 μ L) in each well of the plate to allow similar extent of drying in an air-oven at 50 °C for 4 h.

Sample	GO solid content	Thickness _{at edge}	Thickness in middle	Difference
	(µg)	(nm)	(nm)	(nm)
GO _H	60	624	742	118
	200	825	1161	336
GOI	60	51	88	37
	200	321	351	30

Table S2: Surface thickness measurement of GO_H and GO_I coated surface using surface profilometer. The results reported are the average of three measurements in different directions.

	X	RD	XPS (% Component)			
Sample	20	d (Å)	С-С, С=С, С-Н	С-ОН,	C=0,	О=С-ОН
-			(285.0 eV)	Ероху	Carbonyl	(289.6 eV)
				(286.2 eV)	(288.1 eV)	
GO _H	11.25	7.8	6.8	41.4	39.9	11.9
GOI	9.8	9.04	18.7	53.3	23.6	4.4

Table S3: XRD data (d – Interlayer spacing) and XPS deconvoluted percentage componentof GO_H and GO_I .

Study	Synthetic	Bacterial	Concentration/	Inhibition	Ref.
	Method for GO		sonication time	(%)	
	preparation	Strain			
GO coated surface	Improved	E. coli	>150µg GO	\geq 100 in	This work
for inhibition of	Hummers	G	solid content	E.coli	
Biofilm formation		S. aureus		88% in S	
				aureus	
				(in Biofilm	
				inhibition)	
Suspension	Improved	E. coli	100 µg/mL	85	This work
			/2 min		
			/2 11111.		
	Hummers	S. aureus	100 µg/mL	93	
			/2 min.		
Suspension	Modified	E. coli	40 µg/mL	69.3	1
	Aummers and Offeman		/n.a.		
	Cheman				
Suspension	Modified	E.coli	40 µg/mL	97.7-45.5	2
	Hummers and		/0.240		
	Offeman		/0-240		
Suspension and	Modified	E.coli	400 µg solid GO	79-21 for	3
coated cellulose	Hummers and		content for	coated	
filter	Offeman		coated and 200	70.27 fair	
			µg for	70-27 for Suspension	
			Suspension	Buspension	
			/0-120		
Highly wrinkled GO	Modified	E. coli,	Surface	80	4
films	Hummers and		roughness		
	Offeman	S. aureus,	Rq-500nm		
		Mycobacterium	$>1000 \mu g/mL$		

Table S4: Comparison of our GO coated substrate with previously reported literature in terms of percentage inhibition at the respective concentration.

S15

References

- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. *ACS Nano*, 2011, 5, 6971-6980.
- Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. *Langmuir*, 2012, 28, 12364–12372.
- Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano, 2015, 9, 7226-7236.
- Zou, F.; Zhou, H.; Jeong, D. Y.; Kwon, J.; Eom, S. U.; Park, T. J.; Hong S. W.; Lee, J. Wrinkled Surface-Mediated Antibacterial Activity of Graphene Oxide Nanosheets. *ACS Appl. Mater. Interfaces*, 2017, 9, 1343–1351.

S16