## Controlling the Degree of Esterification of Citrus Pectin for Demanding Applications by Selection of the Source

Rosaria Ciriminna,<sup>a</sup> Alexandra Fidalgo,<sup>b</sup> Riccardo Delisi,<sup>a</sup> Alfredo Tamburino,<sup>c</sup> Diego Carnaroglio,<sup>c,d</sup> Giancarlo Cravotto,<sup>c</sup> Laura M. Ilharco,<sup>b</sup>\* Mario Pagliaro<sup>a</sup>\*

<sup>a</sup>Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; <sup>b</sup>Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; <sup>c</sup>Dipartimento di Scienza e Tecnologia del Farmaco and Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, via P. Giuria 9, 10125 Torino, Italy; <sup>d</sup>Milestone, via Fabenefratelli, 1-5, 24010 Sorisole, Bergamo, Italy; <sup>e</sup>Dipartimento Agricoltura, Legambiente Sicilia, via Tripoli 3, 90138 Palermo, Italy

**Supplementary Information** 

| Assignment                                  | Orange<br>outer skin  | Lemon<br>outer skin  | Orange<br>peel       | Lemon<br>peel        | Grapefruit peel       | Orange<br>waste      | Lemon<br>waste       |
|---------------------------------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|
| νО-Н                                        | 3483 <sub>S,sh</sub>  | 3510 <sub>VS</sub>   | 3496 <sub>VS</sub>   | 3516 <sub>VS</sub>   | 3479 <sub>VS,sh</sub> | 3465 <sub>VS</sub>   | 3467 <sub>S</sub>    |
| νО-Н                                        | 3303 <sub>VS</sub>    | 3271 <sub>VS</sub>   | 3253 <sub>VS</sub>   | 3290 <sub>VS</sub>   | 3290 <sub>VS</sub>    | 3373 <sub>VS</sub>   | 3270 <sub>VS</sub>   |
| vCH                                         |                       | 2943 <sub>S</sub>    |                      | 2941 <sub>s</sub>    |                       |                      | 2941 <sub>s</sub>    |
| vCH                                         | 2933 <sub>S</sub>     |                      | 2929 <sub>VS</sub>   |                      | 2931 <sub>VS</sub>    | 2935 <sub>S</sub>    |                      |
| vCH                                         | 2914 <sub>S</sub>     | 2910 <sub>s</sub>    |                      | 2910 <sub>s</sub>    |                       |                      | 2912 <sub>S</sub>    |
| vCH                                         | 2897 <sub>S,sh</sub>  |                      |                      |                      | 2895 <sub>VS</sub>    | 2895 <sub>S,sh</sub> |                      |
| v(C=O) <sub>carb.ac</sub> .                 | 1724 <sub>m</sub>     | 1729 <sub>m</sub>    | 1724 <sub>m</sub>    | 1728 <sub>VS</sub>   | 1720 <sub>m</sub>     | 1726 <sub>m</sub>    | 1724 <sub>VS</sub>   |
|                                             |                       | 1670 <sub>m</sub>    |                      |                      | 1626 <sub>m</sub>     |                      |                      |
| v <sub>as</sub> (COO <sup>-</sup> )         | 1603 <sub>S</sub>     | 1591 <sub>m</sub>    | 1601 <sub>s</sub>    | 1595 <sub>S</sub>    | 1603 <sub>S</sub>     | 1606 <sub>s</sub>    | 1597 <sub>VS</sub>   |
|                                             | 1516 <sub>w</sub>     |                      | 1514 <sub>m</sub>    | 1516 <sub>w</sub>    | 1518 <sub>m</sub>     | 1514 <sub>w</sub>    | 1512 <sub>m</sub>    |
|                                             |                       |                      |                      |                      | 1500 <sub>m</sub>     |                      | 1458 <sub>S</sub>    |
|                                             |                       | 1444 <sub>m</sub>    |                      |                      | 1442 <sub>S</sub>     | 1443 <sub>S,sh</sub> | 1440 <sub>VS</sub>   |
| $\delta_{as}(CH_3)_{ester}$                 | 1417 <sub>s</sub>     | 1427 <sub>m</sub>    | 1427 <sub>S</sub>    |                      | 1421 <sub>s</sub>     | 1425 <sub>S</sub>    | 1419 <sub>VS</sub>   |
| v <sub>s</sub> (COO <sup>-</sup> )          |                       | 1415 <sub>m</sub>    | 1414 <sub>S</sub>    | 1414 <sub>m</sub>    | 1412 <sub>S</sub>     |                      | 1412 <sub>VS</sub>   |
| $\delta_s(CH_3)_{ester}$                    | 1375 <sub>m</sub>     | 1369 <sub>m</sub>    | 1377 <sub>m</sub>    | 1371 <sub>m</sub>    | 1377 <sub>S</sub>     | 1372 <sub>S</sub>    | 1377 <sub>S</sub>    |
|                                             |                       |                      |                      |                      | 1365 <sub>S</sub>     |                      | 1365 <sub>S</sub>    |
|                                             |                       |                      |                      |                      | 1296 <sub>S</sub>     |                      |                      |
|                                             |                       |                      |                      |                      | 1282 <sub>S</sub>     |                      |                      |
| v(C-O-C) <sub>ester</sub>                   |                       | 1265m                | 1265 <sub>m</sub>    | 1261 <sub>m</sub>    | 1263 <sub>S</sub>     | 1261 <sub>m</sub>    | 1257 <sub>S</sub>    |
| vC-0                                        |                       | 1236 <sub>m</sub>    |                      | 1232 <sub>m</sub>    |                       | 1232 <sub>m,sh</sub> | 1240 <sub>S</sub>    |
|                                             |                       |                      |                      |                      | 1209m                 |                      |                      |
|                                             |                       |                      |                      |                      | 1176 <sub>m</sub>     |                      |                      |
|                                             | 1146 <sub>S,sh</sub>  | 1138 <sub>m</sub>    | 1132 <sub>m</sub>    | 1144 <sub>m,sh</sub> | 1134 <sub>S</sub>     | 1142 <sub>S,sh</sub> | 1146 <sub>S,sh</sub> |
|                                             |                       |                      |                      |                      | 1126 <sub>S</sub>     |                      |                      |
| v(C-O-C) <sub>pyranose</sub><br>+ v(C-OH) + | 1101 <sub>VS,sh</sub> | 1099 <sub>m</sub>    | 1101 <sub>m</sub>    | 1097 <sub>S,sh</sub> | 1090 <sub>S</sub>     | 1099 <sub>S</sub>    | $1101_{VS,sh}$       |
| v(C-C)+                                     | 1072 <sub>VS,sh</sub> | 1078 <sub>m</sub>    | 1068 <sub>m</sub>    | 1070 <sub>S</sub>    | 1074 <sub>S</sub>     | 1078 <sub>S</sub>    | 1066 <sub>VS</sub>   |
|                                             | 1046 <sub>VS</sub>    |                      |                      |                      | 1043 <sub>S</sub>     | 1039 <sub>S,sh</sub> | 1051 <sub>VS</sub>   |
|                                             | 1032 <sub>VS,sh</sub> | 1034 <sub>m,sh</sub> | 1032 <sub>m,sh</sub> | 1033 <sub>m,sh</sub> |                       |                      | 1031 <sub>VS</sub>   |
| γ <sub>op</sub> (Ο-Η)                       |                       | 993 <sub>w,sh</sub>  | 990 <sub>m,sh</sub>  | 987 <sub>m,sh</sub>  |                       | 995 <sub>m,sh</sub>  | 993 <sub>S,sh</sub>  |
| ρ(CH <sub>3</sub> ) <sub>ester</sub>        | 920 <sub>vw</sub>     | 916 <sub>vw</sub>    | 924 <sub>vw</sub>    | 920 <sub>vw,sh</sub> | 920 <sub>vw</sub>     | 921 <sub>vw</sub>    | 916 <sub>vw</sub>    |
|                                             |                       |                      |                      | 910 <sub>vw</sub>    |                       |                      |                      |
|                                             |                       | 900 <sub>vw</sub>    |                      | 895 <sub>vw</sub>    | 895 <sub>vw</sub>     |                      | 897 <sub>vw</sub>    |
|                                             | 866 vw                | 864 <sub>vw</sub>    | 866 <sub>vw</sub>    | 866 <sub>vw</sub>    | 866 <sub>vw</sub>     | 868 <sub>vw</sub>    | 868 <sub>vw</sub>    |
|                                             | 818 w                 | 818 <sub>vw</sub>    | 820 <sub>vw</sub>    | 816 <sub>w</sub>     | 820 <sub>w</sub>      | 818 <sub>vw</sub>    | 818 <sub>vw</sub>    |
|                                             | 777 m                 | 777 <sub>w</sub>     | 777 <sub>vw</sub>    | 775 <sub>m</sub>     | 779 <sub>w</sub>      | 777 <sub>w</sub>     | 777 <sub>w</sub>     |

 Table S1. Assignment of the DRIFT spectra of pectin from different sources, present work

VS - very strong; S - strong; m- medium; w - weak; vw - vwey weak, sh - shoulder.

## **Brief analysis**

The 3800-2200 cm<sup>-1</sup> region is dominated by broad bands related to the stretching vibrations of hydroxyl and CH<sub>x</sub> groups (vO-H and vC-H). The vO-H band, with maximum at 3200-3300 cm<sup>-1</sup>, is associated with hydroxyl groups of the pyranose rings and adsorbed water, interacting in different intra- and intermolecular hydrogen bonds; the fraction of OH groups with weaker hydrogen-bond interactions is responsible for the high wavenumber shoulder (at ~3500 cm<sup>-1</sup>). The maximum at 2930-2940 cm<sup>-1</sup> is assigned to vCH and vasCH3 modes of the pectin backbone, and to vasCH2 modes of galactose and arabinose rings of the "hairy" regions. The shoulder at 2860-2890 cm<sup>-1</sup> correlates with the v<sub>s</sub>CH<sub>3</sub> modes of the backbone and also with different vCH modes of the pyranose rings, both in HG and RG regions. Two shoulders located near 2700 and 2500 cm<sup>-1</sup> are frequently assigned as satellite v(CO)O-H bands of carboxylic acid dimers. The two strong bands in the 1800-1500 cm<sup>-1</sup> region, with maxima at  $\sim$ 1730 and  $\sim 1610$  cm<sup>-1</sup>, are assigned to the stretching modes of carbonyl groups (mostly from esterified galacturonic acid, v(C=O)ester) and of carboxylate groups ( $v_{as}COO^{-}$ ), respectively. The weaker band at 1670 cm<sup>-1</sup> may correlate with nonesterified hydrogenated acidic carbonyl groups, v(C=O) acid. The main CH<sub>x</sub> and C-O-H deformation modes appear partially overlapped, in the 1500-1200 cm<sup>-1</sup> region. The band at 1230 cm<sup>-1</sup>, visible in all the spectra, and the one at 1330 cm<sup>-1</sup>, only detected in the orange derived samples, are assigned to in-plane deformation modes of alcohol hydroxyl groups in the pyranose rings of the pectin chain,  $\delta$ (C-O-H)pyranose. The band at 1370 cm<sup>-1</sup> is assigned to the symmetric methyl deformation mode,  $\delta_s$ (CH<sub>3</sub>), of ester methyl groups in the galacturonic rings and of rhamnose rings of the pectin backbone. The corresponding antisymmetric mode is hardly identified as a shoulder, at ~1440 cm<sup>-</sup> <sup>1</sup>. The other ester-related band in this region is the C-O-C stretching mode, v(C-O-C)ester, which appears at 1265 cm<sup>-1</sup>, partially overlapped with the 1230 cm<sup>-1</sup> band. The band at 1410 cm<sup>-1</sup> is assigned to the symmetric stretch of carboxylate groups, vsCOO-, present in all the samples. The group of five intense and partially overlapped bands observed in the 1200-950 cm<sup>-1</sup> region is typical of pectin. These are assigned to the skeletal and C-O-C stretching modes of the pyranose ring, v(C-C) pyranose and v(C-O-C)C) pyranose, to C-O-C stretching vibrations of the glycosidic bond, v(C-O-C)glycoside, and to a combination of the vC-OH and vC-C modes from the pyranose rings. The 950-700 cm<sup>-1</sup> region contains the bands related to the external deformation vibrations of methyl, methylene and methyne groups. The band at 919 cm<sup>-1</sup> is assigned to the rocking mode of the ester methyl group,  $\rho(CH_3)$  ester.

Orange outer skin Grapefruit peel Orange peel Orange waste Assignment FWHM FWHM FWHM Ŷ А Ŷ FWHM А Ÿ А Ψ̈́ А 1720 89 41.70 1731 73 41.10 1736 61 28.03 1720 85 47.29 v(C=O)<sub>ester</sub> 1658 42 6.27 1666 66 24.37 1672 89 31.38 1648 49 18.83 v(C=O)<sub>acid</sub> 58.67 69.47 74.95 1601 86 1596 91 1599 86 54.98 1596 90  $v_{as}COO^{-}$ 1140 27.88 1141 31.96 1153 16.14 1140 23.08 59 64 39 52 v(C-O-C)<sub>pyranose</sub> 1106 21 1.91 1100 43 13.15 1116 60 35.71 1089 69 49,63 v(C-O-C)<sub>pyranose</sub> 1069 82.86 1069 46 15.20 1063 71 51.30 1036 56 30.92 v(C-O-C)<sub>glycoside</sub> 81 1015 54 28.34 1023 73 37.36 1014 51 23.27 1001 39 12.16  $\nu$ (C-OH)<sub>pyranose</sub> +  $\nu$ (C-C)<sub>pyranose</sub>

| Table S2. Summary of the results obtained by deconvolution of the DRIFT spectra in the 1850 to 1500 and 1150 to 950 cm <sup>-1</sup> regions | 3: Ϋ - |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------|
| wavenumber ( $cm^{-1}$ ); FWHM - full width at half maximum; A - integrated area.                                                            |        |

| Lemon outer skin |      | Lemon peel |      |      | Lemon waste |      |      | Assignment |                                                          |  |
|------------------|------|------------|------|------|-------------|------|------|------------|----------------------------------------------------------|--|
| Ŷ                | FWHM | А          | Ø    | FWHM | Α           | Ŷ    | FWHM | Α          | Assignment                                               |  |
| 1738             | 56   | 22.14      | 1733 | 60   | 32.27       | 1728 | 73   | 77.38      | v(C=O) <sub>ester</sub>                                  |  |
| 1675             | 62   | 19.08      | 1683 | 79   | 26.08       | 1668 | 64   | 29.33      | v(C=O) <sub>acid</sub>                                   |  |
| 1599             | 92   | 49.53      | 1596 | 78   | 36.18       | 1594 | 93   | 88.34      | v <sub>as</sub> COO <sup>-</sup>                         |  |
|                  |      |            |      |      |             |      |      |            |                                                          |  |
| 1148             | 32   | 5.55       | 1147 | 25   | 3.66        | 1149 | 27   | 3.64       | v(C-O-C) <sub>pyranose</sub>                             |  |
| 1109             | 32   | 3.17       | 1096 | 80   | 62.03       | 1096 | 90   | 76.57      | v(C-O-C) <sub>pyranose</sub>                             |  |
| 1082             | 110  | 104.10     | 1051 | 54   | 30.34       | 1050 | 52   | 26.30      | v(C-O-C) <sub>glycoside</sub>                            |  |
| 1018             | 67   | 38.73      | 1014 | 50   | 33.68       | 1012 | 49   | 34.14      | v(C-OH) <sub>pyranose</sub> + v(C-C) <sub>pyranose</sub> |  |

| Citrus Pectin A |      | Citrus Pectin B |      |      | Citrus Pectin C <sup>a</sup> |      |      | Citrus Pectin D <sup>b</sup> |      |      | A    |                                                          |  |
|-----------------|------|-----------------|------|------|------------------------------|------|------|------------------------------|------|------|------|----------------------------------------------------------|--|
| ĩ               | FWHM | А               | Ŷ    | FWHM | А                            | ĩ    | FWHM | А                            | Ŷ    | FWHM | А    | Assignment                                               |  |
| 1758            | 49   | 2.55            | 1760 | 29   | 1.94                         | 1756 | 31   | 0.33                         | 1764 | 26   | 0.46 | v(C=O) <sub>ester</sub>                                  |  |
| 1722            | 47   | 2.14            | 1735 | 57   | 10.84                        | 1731 | 48   | 0.79                         | 1734 | 83   | 5.78 | v(C=O) <sub>ester</sub>                                  |  |
| 1670            | 55   | 1.60            | 1671 | 77   | 4.32                         | 1680 | 43   | 0.15                         | 1666 | 42   | 0.69 | v(C=O) <sub>acid</sub>                                   |  |
| -               | -    | -               | 1628 | 90   | 6.69                         | 1627 | 84   | 1.24                         | 1631 | 50   | 1.76 | δH-O-H (H <sub>2</sub> O)                                |  |
| 1600            | 43   | 0.60            | 1598 | 49   | 3.64                         | 1595 | 55   | 0.40                         | 1594 | 41   | 0.34 | v <sub>as</sub> COO <sup>-</sup>                         |  |
|                 |      |                 |      |      |                              |      |      |                              |      |      |      |                                                          |  |
| 1149            | 18   | 5.94            | 1149 | 47   | 6.43                         | 1146 | 45   | 0.77                         | 1152 | 52   | 2.90 | v(C-O-C) <sub>pyranose</sub>                             |  |
| 1110            | 26   | 10.02           | 1100 | 46   | 8.62                         | 1103 | 38   | 0.80                         | 1106 | 48   | 1.80 | v(C-O-C) <sub>pyranose</sub>                             |  |
| 1052            | 17   | 6.03            | 1051 | 23   | 1.82                         | 1049 | 19   | 0.09                         | 1052 | 93   | 6.46 | v(C-O-C) <sub>glycoside</sub>                            |  |
| 1025            | 21   | 11.15           | 1022 | 50   | 10.05                        | 1021 | 54   | 1.37                         | 1009 | 42   | 1.25 | ν(C-OH) <sub>pyranose</sub> + ν(C-C) <sub>pyranose</sub> |  |

Table S3. Summary of the results obtained by deconvolution of the DRIFT spectra of commercial citrus pectins in the 1850 to 1500 and 1150 to 950 cm<sup>-1</sup> regions:  $\tilde{v}$  - wavenumber (cm<sup>-1</sup>); FWHM - full width at half maximum; A - integrated area.

<sup>e</sup>esterified potassium salt <sup>b</sup>esterified



Figure S1. DRIFT spectra of commercial pectins: black – citrus pectin A; red – citrus pectin B; green – citrus pectin C; blue – citrus pectin D.