Supporting Information

Palladium-catalyzed ortho C-H Arylation of Aniline Carbamates with Diazonium Salts under Mild Condition: Expedient Synthesis of Carbazole Alkaloids

Arghya Polley,^{†,‡} Kasarla Varalaxmi^{†,§} and Ranjan Jana^{*,†,‡}

[†]Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology

4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India

[‡]Academy of Scientific and Innovative Research (AcSIR), Kolkata-700032, West Bengal, India

[§]National Institute of Pharmaceutical Education and Research, Kolkata-700054, West Bengal, India

E-mail: rjana@iicb.res.in

Table of Contents

1.	Attempted conditions for de-methylation of O-Methylmahanine page	S 3
2.	¹ H and ¹³ C NMR spectra of all compounds	page S4-S43
3.	¹ H NMR spectra of kinetic study	page S44
4.	GC MS spectra of tempo-adduct product	.page S44-S45
5.	References	.page S45

Entry	Conditions	Time	Results		
1^1	BBr3, DCM, -78 °C ~rt	30 min	Decomposed		
2^2	TMSCl, NaI,CH3CN,rt	45 min	Decomposed		
3 ³	BF3-Et2O, DMS, 0°C	30 min	Decomposed		
4^4	Trimethyliodosilane, DCM, rt	45 min	Decomposed		
5 ⁵	AlCl ₃ in benzene, reflux,	24 h	No reaction		
6^6	All ₃ ,pyridine, MeCN	24 h	No reaction		

Table S 1: Attempted conditions for de-methylation of O-Methylmahanine

Scheme S1: ¹H NMR and ¹³C NMR Spectra of all compounds

¹H NMR and ¹³C NMR Spectra of compound 3a

110 100 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of compound 3d

1	1150/ Oktober 1	diam'r a star	ALC: CONSIGNOR	the design of the		Concerning and the second s	and an and a second second	All		at constitues	or addres it	and the second sec	Contraction of the local division of the loc	
15	-90	-95	-100	-105	-110	-115	-120 f1 (ppm)	-125	-130	-135	-140	-145	-150	

AM-1149 — 1D 19F experiment

--62.750

-55.5 -56.0 -56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 -68.0 -68.5 -69.0 f1 (ppm)

f1 (ppm)

AP-1118 — 10 19F experiment

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 f1 (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of compound 3q

---62.454

Ĩ

							L								
-56	-57	-58	-59	- <mark>6</mark> 0	-61	-62	-63 f1 (ppm)	<mark>-64</mark>	-65	-66	-67	-68	-69	-70	-71

110 100 f1 (ppm)

Scheme S2: Intermolecular Molecular Kinetic Isotopic effect

Scheme S3: GC MS spectra of tempo-adduct product

HRMS of TEMPO-adduct product $C_{15}H_{23}NO [M+H]^+$: Exact Mass: 234.1858; found: 234.1852.

References

(1) Krahl, M. P.; Jager, A.; Krause, T.; Knölker, H. J. First total synthesis of the 7-oxygenated carbazole alkaloids clauszoline-K, 3-formyl-7-hydroxycarbazole, clausine M, clausine N and the anti-HIV activesiamenol using a highly efficient palladium-catalyzed approach. *Org. Biomol. Chem.* **2006**, *4*, 3215-3219.

(2) Jung, M. E.; Lyster, M. A. Quantitative dealkylation of alkyl ethers via treatment with trimethylsilyl iodide. A new method for ether hydrolysis. *J. Org. Chem.* **1977**, *42*, 3761-3764.

(3) Fuji, K.; Kawabata, T.; Fujita, E. Hard Acid and Soft Nucleophile System. IV. Removal of Benzyl Protecting Group with Boron Trifluoride Etherate and Dimethyl Sulflide. *Chem. Pharm. Bull.* **1980**, *28*, 3662-3664.

(4) Vickery, E. H.; Pahler, L. F.; Eisenbraun, E. J.Selective O-demethylation of catechol ethers. Comparison of boron tribromide and iodotrimethylsilane. *J. Org. Chem.* **1979**, *44*, 4444-4446.

(5) Negi, A. S.; Chattopadhyay, S. K.; Srivastava, S.;Bhattacharya, A. K.; A Simple Regioselective Demethylation of p-Aryl Methyl Ethers Using Aluminum Chloride-Dichloromethane System. *Synth. Commun.* 2005, *35*, 15-20.

(6) Tian, J.; Sang, D. Application of aluminum triiodide in organic synthesis. *ARKIVOC* **2015**, 446-493.