Room-temperature, Copper-Free Sonogashira Reactions Facilitated by Air-stable, Mono-ligated Precatalyst [DTBNpP] Pd(crotyl)Cl

Katherine Pohida[†], David J. Maloney[†], Bryan T. Mott^{*†}, Ganesha Rai^{*†}

[†]National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States.

Supporting information

Table of Contents

1.	Additional Tables	. S2
2.	Catalyst Characterization Data	. S2
3.	Compound Characterization Data	. S5

1. Additional Tables

Table S1. Evaluation of Alternate and Sustainable Solvents with optimized base (TMP).^a

ontru	hasa	solvent	3 (yield, %) ^{b}	
entry	Uase		t = 2 h	t = 18 h
1	TMP	THF	26	70
2	TMP	2-MeTHF	36	58
3	TMP	Sulfolane	43	70
4	TMP	EtOAc	40	62
5	TMP	ACN	77	100

^{*a*}Reaction conditions: **1** (0.5 mmol), **2** (0.8 mmol), **P2** (.0025 mmol, 5 mol%), TMP (1.0 mmol), solvent (2.5 mL), rt for 18 h with argon atmosphere. ^{*b*}Yield was determined by LC/MS with pyrene as internal standard.

2. Catalyst Characterization Data

Figure S1: ¹H NMR for [DTBNpP] Pd(crotyl)Cl (P2)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.08 (dt, *J* = 12.5, 8.9 Hz, 1H), 4.35 (ddt, *J* = 15.0, 13.2, 6.5 Hz, 1H), 3.64 (d, *J* = 6.5 Hz, 1H), 2.51 (d, *J* = 11.6 Hz, 1H), 2.06 (dt, *J* = 27.1, 13.7 Hz, 2H), 1.70 (td, *J* = 7.3, 1.2 Hz, 3H), 1.42 – 1.29 (m, 22H), 1.20 (d, *J* = 1.3 Hz, 9H).

Figure S2: ¹H NMR for [DTBNpP] Pd(crotyl)Cl sample from JM

¹**H NMR** (400 MHz, Chloroform-*d*) δ 5.09 (dt, *J* = 12.7, 9.0 Hz, 1H), 4.43 – 4.27 (m, 1H), 3.72 – 3.58 (m, 1H), 2.52 (d, *J* = 11.5 Hz, 1H), 2.09 (qd, *J* = 16.4, 15.4, 6.9 Hz, 2H), 1.78 – 1.65 (m, 3H), 1.51 – 1.28 (m, 21H), 1.22 (d, *J* = 1.2 Hz, 8H).

[DTBNpP] $Pd(\eta^3 - 1 - t - Bu - indenyl)Cl$ (**P5**)

Synthetic procedure: Synthesis of **P5** follow a modified procedure of Hazari et. al as described in the text. To an oven-dried 100 mL round-bottom flask, di-*tert*-butylneopentylphosphine (10 wt% in hexanes) (5.08 mL, 1.60 mmol) was added into Chloro(1-t-butylindenyl)palladium(II) dimer (500 mg, 0.80 mmol, 1.00 equiv) and THF (11 mL). The flask was capped and purged with argon for 5 minutes. The solution was stirred for 2 h at room temperature. The resulting product was filtered, washed with pentane, and dried under vacuum to afford **P5** (red solid, 330 mg, 78%). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.36 (d, *J* = 7.7 Hz, 1H), 7.05 – 6.92 (m, 2H), 6.84 (t, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 2.9 Hz, 1H), 5.74 (d, *J* = 2.9 Hz, 1H), 2.29 (dd, *J* = 14.6, 11.7 Hz, 1H), 1.81 (t, *J* = 14.6 Hz, 1H), 1.48 (s, 9H), 1.35 (d, *J* = 13.3 Hz, 9H), 1.18 (d, *J* = 13.0 Hz, 9H), 1.13 (s, 9H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 139.88, 138.60, 138.55, 126.25, 125.57, 125.34,

124.73, 120.26, 119.34, 108.51, 108.45, 67.34, 67.31, 37.81, 37.68, 35.09, 34.97, 34.90, 34.86, 34.04, 33.94, 33.10, 33.03, 31.05, 31.03, 30.68, 30.64, 30.35, 30.30, 29.61, 29.56, 26.98, 12.76. ³¹**P NMR** (162 MHz, DMSO- d_6) δ 70.86. **HRMS** (ESI+): Expected 493.2210 [M-Cl]⁺ (C₂₆H₄₄PPd). Observed 493.2242.

Figure S3: ¹H NMR

Figure S4: ¹³C NMR

Figure S5: ¹⁹F NMR

3. Compound Characterization Data

I. Spectral Data Figure S6: ¹H NMR

Figure S7: ¹³C NMR

Figure S8: ¹H NMR

Figure S9: ¹³C NMR

Figure S10: 1H NMR

Figure S12: ¹H NMR

Figure S13: ¹³C NMR

Figure S14: ¹H NMR

Figure S15: ¹³C NMR

Figure S16: ¹H NMR

Figure S18: ¹H NMR

Figure S20: ¹H NMR

Figure S21: ¹³C NMR

Figure S22: ¹H NMR

Figure S24: ¹H NMR

Figure S25: ¹³C NMR

Figure S26: ¹H NMR

Figure S27: ¹³C NMR

Figure S28: ¹H NMR

Figure S29: ¹³C NMR

Figure S30: ¹H NMR

Figure S31: ¹³C NMR

Figure S32: ¹H NMR

Figure S33: ¹³C NMR

Figure S34: ¹H NMR

Figure S35: ¹³C NMR

Figure S36: ¹H NMR

Figure S37: ¹³C NMR

Figure S38: ¹H NMR

Figure S39: ¹³C NMR

Figure S40: ¹H NMR

Figure S41: ¹³C NMR

Figure S42: ¹H NMR

Figure S43: ¹³C NMR

Figure S44: ¹H NMR

Figure S45: ¹³C NMR

*weak intensity due to insolubility

Figure S46: ¹H NMR

Figure S48: ¹H NMR

Figure S49: ¹³C NMR

Figure S50: ¹H NMR

Figure S51: ¹³C NMR

Figure S52: ¹H NMR

Figure S53: ¹³C NMR

Figure S54: ¹H NMR

Figure S55: ¹³C NMR

Figure S56: ¹H NMR

Figure S57: ¹³C NMR

Figure S58: ¹H NMR

Figure S59: ¹³C NMR

Figure S60: ¹H NMR

Figure S61: ¹³C NMR

Figure S62: ¹H NMR

Figure S63: ¹³C NMR

Figure S64: ¹H NMR

Figure S65: ¹³C NMR

Figure S67: ¹³C NMR

Figure S68: ¹H NMR

Figure S69: ¹³C NMR

Figure S70: ¹H NMR

Figure S71: ¹³C NMR

Figure S72: ¹H NMR

Figure S73: ¹³C NMR

Figure S74: ¹H NMR

Figure S75: ¹³C NMR

Figure S76: ¹H NMR

Figure S77: ¹³C NMR

Figure S78: ¹H NMR

Figure S79: ¹³C NMR

Figure S80: ¹H NMR

Figure S81: ¹³C NMR

Figure S82: ¹H NMR

Figure S83: ¹³C NMR

Figure S84: ¹H NMR

Figure S85: ¹³C NMR

Figure S86: ¹H NMR

Figure S87: ¹³C NMR

Figure S88: ¹H NMR

Figure S89: ¹³C NMR

Figure S90: ¹H NMR

Figure S91: ¹³C NMR

Figure S92: ¹H NMR

Figure S93: ¹³C NMR

Figure S94: ¹H NMR

Figure S95: ¹³C NMR

Figure S96: ¹H NMR

Figure S97: ¹³C NMR

Figure S98: ¹H NMR

Figure S99: ¹³C NMR

Figure S100: ¹H NMR

Figure S101: ¹³C NMR

