## Supporting Information

## For

# One-Pot Magnetic Iron Oxide-Carbon Nanodots Composite Catalyzed Cyclooxidative Aqueous Tandem Synthesis of Quinazolinones in Presence of Tert-butyl Hydroperoxide

Biju Majumdar,<sup>+</sup> Daisy Sarma,<sup>+</sup> Siddarth Jain<sup>+</sup> and Tridib K. Sarma<sup>+</sup>\*

<sup>†</sup>Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Madhya Pradesh-453552

Corresponding Author E-mail: tridib@iiti.ac.in



Figure S1: a) SEM image and b) EDS spectrum of Fe<sub>3</sub>O<sub>4</sub>-CND composite

| $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| catalyst (wt%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oxidant (eq.)                                                                    | temp. (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yield <sup>b</sup> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $Fe_3O_4$ -CND (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Fe_3O_4$ -CND (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBHP (2)                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Fe_3O_4$ -CND (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBHP (2)                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fe <sub>3</sub> O <sub>4</sub> -CND (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH <sub>3</sub> CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TBHP (2)                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fe <sub>3</sub> O <sub>4</sub> -CND (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TBHP (4)                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Fe_3O_4$ -CND (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $K_2CO_3(2)$                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ &$ | $\begin{array}{c} & \bigcirc & \bigcirc & & \bigcirc & & & & & \\ & & & & & & &$ | $\begin{array}{c} & \overbrace{\begin{subarray}{c} OH \\ + & \overbrace{\begin{subarray}{c} NH_2 \\ 2a \end{subarray}} & \underbrace{\begin{subarray}{c} Catalyst, additive \\ Solvent, Temperature \end{subarray}}_{Solvent, Temperature \end{subarray}} \\ \hline \\ \hline \\ \hline \\ catalyst (wt\%) & solvent & oxidant (eq.) \\ \hline \\ \hline \\ Fe_3O_4-CND (10) & H_2O & - \\ \hline \\ Fe_3O_4-CND (15) & H_2O & TBHP (2) \\ \hline \\ Fe_3O_4-CND (10) & CH_3CN & TBHP (2) \\ \hline \\ Fe_3O_4-CND (10) & H_2O & TBHP (2) \\ \hline \\ Fe_3O_4-CND (10) & H_2O & TBHP (4) \\ \hline \\ Fe_3O_4-CND (10) & H_2O & K_2CO_3 (2) \\ \hline \end{array}$ | $ \begin{array}{c} & \bigcirc \\ & \bigcirc \\ & \bigcirc \\ & 2a \end{array} \end{array} \xrightarrow{O} \\ \begin{array}{c} & \bigcirc \\ & \bigcirc \\ & OH_{+} \\ & \bigcirc \\ & \searrow \\ & OH_{2} \\ & & & & OH_{2} \\ & & & & OH_{2} \\ & & & & & OH_{2} \\ & & & & & & & OH_{2} \\ & & & & & & & & & & & \\ & & & & & & $ |

Table S1. Oxidative coupling of (1a) and (2a) under various conditions<sup>a</sup>

<sup>a</sup>Reaction conditions: 1a (1.5 mmol), 2a (0.5 mmol), catalyst 5-15 wt%, oxidants1-4 equiv. and solvent 2mL, 16 hr, <sup>b</sup> yields of isolated product

#### Characterization data of quinazolinones

**2-phenylquinazolin-4(3***H***)-one (3aa)<sup>1</sup>**: Colourless solid, m.p. 231-233 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta = 11.28$  (br, s, 1H), 8.33-8.31 (m, 1H), 8.23-8.20 (m, 2H), 7.84-7.78 (m, 2H), 7.60-7.56 (m, 3H), 7.52-7.48 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta = 163.6$ , 151.6, 149.4, 134.8, 132.8, 131.6, 129.0, 128.0, 127.2, 126.8, 126.3, 120.8; HRMS (ESI): calcd for [C<sub>14</sub>H<sub>10</sub>N<sub>2</sub>O<sup>+</sup>+ Na<sup>+</sup>] 245.0685, found 245.0691.

**2-(4-chlorophenyl)quinazolin-4(3***H***)-one (3ba)<sup>2</sup>**: Colourless solid, m.p. >300 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz): δ = 12.59 (br, s, 1H), 8.18 (d, *J*=8.56 Hz, 2H), 8.14 (d, *J*=7.56 Hz, 1H), 7.84 (t, *J*=7.0 Hz, 1H), 7.72 (d, *J*=8.0 Hz, 1H), 7.60 (d, *J*=8.8 Hz, 2H), 7.52 (t, *J*=7.0 Hz, 1H);<sup>13</sup>C

NMR (DMSO-d<sup>6</sup>, 100 MHz):  $\delta = 163.5$ , 147.7, 140.6, 133.4, 128.8, 128.3, 127.4, 117.3, 114.9, 114.5; HRMS (ESI): calcd for [C<sub>14</sub>H<sub>9</sub>ClN<sub>2</sub>O<sup>+</sup>+ Na<sup>+</sup>] 279.0296, found 279.0303.

**2-(pyridin-2-yl)quinazolin-4(3***H***)-one (3ca)<sup>3</sup>**: Yellow solid, m.p. 165-170 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz):  $\delta = 11.79$  (br, s, 1H),8.75-8.72 (m, 1H), 8.46-8.41 (m, 1H), 8.19-8.15 (m, 1H), 8.09-8.02 (m, 1H), 7.89-7.76 (m, 2H), 7.66-7.61 (m, 1H), 7.58-7.52 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta = 160.3$ , 149.1, 148.8, 148.1, 147.6, 137.6, 135.0, 133.1, 129.6, 126.4, 126.2, 123.5, 122.0; HRMS (ESI): calcd for [C<sub>13</sub>H<sub>9</sub>N<sub>3</sub>O<sup>+</sup>+ Na<sup>+</sup>] 223.0746, found 223.0752.

(*E*)-2-styrylquinazolin-4(3*H*)-one (3da)<sup>2</sup>: Colourless solid, m.p. 224-227 °C; <sup>1</sup>H NMR (DMSOd<sup>6</sup>, 400 MHz):  $\delta = 12.31$  (br, s, 1H), 8.09 (d, *J*= 7.8 Hz, 1H), 7.92 (d, *J* = 16.3 Hz, 1H), 7.77 (t, *J* = 7.04 Hz, 1H), 7.70-7.64 (m, 3H), 7.51-7.36 (m, 4H), 6.98 (d, *J* = 15.2 Hz, 1H);<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 100 MHz):  $\delta = 161.8$ , 159.9, 151.4, 149.0, 138.3, 135.0, 129.8, 129.1, 127.7, 126.3, 125.9, 121.1; HRMS (ESI): calcd for [C<sub>16</sub>H<sub>12</sub>N<sub>2</sub>O<sup>+</sup>+ Na<sup>+</sup>] 271.0842, found 271.0853.

**6-chloro-2-phenylquinazolin-4(3***H***)-one (3ab)**<sup>4</sup>: m.p. 294-296 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz): δ = 12.69 (br, s, 1H), 8.17-8.15 (m, 2H), 8.08 (s, 1H), 7.87-7.85 (m, 1H), 7.78-7.76 (m, 1H), 7.64-7.51 (m, 3H); HRMS (ESI): calcd for [C<sub>14</sub>H<sub>9</sub>ClN<sub>2</sub>O<sup>++</sup> Na<sup>+</sup>] 279.0296, found 279.0302.

**2-(2-nitrophenyl)quinazolin-4(3***H***)-one (3ea)**: Pale Yellow Solid, 230-240 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz):  $\delta = 12.81$  (br, s, 1H), 8.19 (d, J = 8.28 Hz, 1H), 8.16 (d, J = 7.28 Hz, 1H), 7.92-7.80 (m, 4H), 7.63 (d, J = 8.04 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H);<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 100 MHz):  $\delta = 161.5$ , 151.6, 148.5, 147.4, 134.7, 133.9, 131.5, 129.1, 127.4, 127.1, 125.9, 124.5, 121.2; HRMS (ESI): calcd for [C<sub>14</sub>H<sub>9</sub>N<sub>3</sub>O<sub>3</sub><sup>++</sup> Na<sup>+</sup>] 290.0536, found 290.0540.

**2-pentylquinazolin-4(3***H***)-one (3fa)<sup>2</sup>**: Colourless solid, m.p. 152-154 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta = 12.28$  (br, s, 1H), 8.27 (d, J = 6.86 Hz, 1H), 7.77-7.75 (m, 1H), 7.68 (d, J = 7.45 Hz, 1H), 7.45 (t,J = 7.62 Hz, 1H), 2.80 (t, J = 7.76 Hz, 2H), 1.92-1.87 (m, 2H), 1.46-1.39 (m, 4H), 0.92 (t, J = 7.76 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta = 165.5$ , 158.2, 150.6, 135.2, 128.3, 127.8, 127.2, 121.1, 36.6, 31.9, 28.1, 22.8, 14.2; HRMS (ESI): calcd for [C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>O<sup>+</sup>+ Na<sup>+</sup>] 239.1155, found 239.1167.

**2-hexylquinazolin-4(3***H***)-one (3ga)<sup>5</sup>**: Colourless solid, m.p. 140-145 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 12.47 (br, s, 1H), 8.32 (d, *J* = 8.27 Hz, 1H), 7.78-7.75 (m, 1H), 7.75 (d, *J* = 8.32 Hz,

1H), 7.46-7.47 (m, 1H), 2.80 (t, J = 7.62 Hz, 2H), 1.90-1.87 (m, 2H), 1.47-1.45 (m, 2H), 1.37-1.30 (m, 4H), 0.88 (t, J = 6.90 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta 165.3$ , 156.1, 149.3, 134.5, 127.4, 126.2, 126.7, 120.1, 35.8, 31.4, 28.6, 27.4, 22.4, 14.0; HRMS (ESI): calcd for [C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>O<sup>++</sup> Na<sup>+</sup>] 253.1311, found 253.1319.

**2-(4-bromophenyl)quinazolin-4(3***H***)-one (3ha)<sup>2</sup>**: Colourless solid, m.p. 290-292 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz):  $\delta$  = 12.59 (br, s, 1H), 8.15-8.10 (m, 3H), 7.82 (t, *J* = 7.04 Hz, 1H), 7.76-7.72 (m, 3H), 7.51 (t, *J* = 7.04 Hz, 1H); <sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 100 MHz):  $\delta$  = 159.7, 151.4, 148.2, 134.6, 131.6, 129.7, 127.5, 126.7, 125.8, 125.2, 121.0; HRMS (ESI): calcd for [C<sub>14</sub>H<sub>9</sub>BrN<sub>2</sub>O<sup>+</sup>+ Na<sup>+</sup>] 322.9790, found 322.9798.

**2-(***p***-tolyl)quinazolin-4(3***H***)-one (3ia)<sup>1</sup>: Colourless solid, m.p. 230-232 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): \delta = 11.40 (br, s, 1H), 8.30 (d, J = 7.52 Hz, 1H), 8.10 (d, J = 8.28 Hz, 2H), 7.82-7.76 (m, 2H), 7.46 (t, J = 7.76 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H);<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz): \delta = 164.1, 151.7, 149.6, 142.1, 134.8, 130.1, 129.9, 129.7, 129.0, 127.8, 127.3, 126.5, 126.3, 120.6, 21.5; HRMS (ESI): calcd for [C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sup>+</sup>+ Na<sup>+</sup>] 259.0842, found 259.0848.** 

**2-(4-methoxyphenyl)quinazolin-4(3***H***)-one (3ja)<sup>1</sup>**: Colourless solid, m.p. 230-233 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta = 10.80$  (br, s, 1H), 8.28 (d, J = 7.52 Hz, 1H), 8.12 (d, J = 8.0 Hz, 2H), 7.78(m, 2H), 7.46 (m, 1H), 7.05 (d, J = 8.04 Hz, 2H), 3.90 (s, 3H); HRMS (ESI): calcd for [C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub><sup>++</sup> Na<sup>+</sup>] 275.0791, found 275.0798.

**2-(furan-2-yl)quinazolin-4(3***H***)-one (3la)<sup>2</sup>**: Colourless solid, m.p. 272-275 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz):  $\delta = 12.48$  (br, s, 1H), 8.10 (d, J = 8.04 Hz, 1H), 7.99 (m, 1H), 7.78 (t, J = 8.52 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 3.52 Hz, 1H), 7.46 (t, J = 7.04 Hz, 1H), 6.74-6.73 (m, 1H); <sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 100 MHz):  $\delta = 161.5$ , 148.6, 146.5, 146.0, 144.0, 134.6, 127.2, 126.4, 125.9, 121.1, 114.5, 112.5; HRMS (ESI): calcd for [C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub><sup>++</sup> Na<sup>+</sup>] 235.0478, found 235.0479.

**2-(thiophen-2-yl)quinazolin-4(3***H***)-one (3ma)**<sup>2</sup>: Colourless solid, m.p. 220-222 °C; <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 400 MHz): δ = 12.63 (br, s, 1H), 8.21 (d, *J* = 4.76 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 5.76 Hz, 1H), 7.77 (t, *J* = 8.52 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 8.04 Hz, 1H), 7.23-7.21 (m, 1H); <sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 100 MHz): δ = 161.8, 148.6, 147.8, 137.3, 134.7,

132.1, 129.4, 128.5, 126.9, 126.3, 125.9, 120.8; HRMS (ESI): calcd for  $[C_{12}H_8N_2OS^++Na^+]$  251.0250, found 251.0252.

**2-phenyl-2,3-dihydroquinazolin-4(1***H***)-one (A)<sup>6</sup>**: Colourless crystal, m.p. 215-220 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.94 (d, J = 7.76 Hz, 1H), 7.60 (m, 2H), 7.44 (m, 3H), 7.33 (t, J = 7.52 Hz, 1H), 6.90 (t, J = 7.76 Hz, 1H), 6.67 (d, J = 8.04 Hz, 1H), 5.90 (s, 1H), 5.88 (br, 1H, NH), 4.35 (br, 1H, NH), <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ):  $\delta$  164.0, 148.3, 142.1, 133.8, 128.9, 128.8, 127.8, 127.3, 117.6, 115.4, 114.8, 67.0; HRMS (ESI): calcd for [C<sub>14</sub>H<sub>12</sub>N<sub>2</sub>O + Na<sup>+</sup>] 247.0842, found 247.0864.

### **References:**

- 1. Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. J. Org. Chem. 2012, 77, 7046.
- Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046.
- 3. Siddiki, S. M. A. H.; Kon, K. A.; Touchy, S.; Shimizu, K. *Catal. Sci. Technol.* **2014**, *4*, 1716.
- 4. Zhou, J.; Fang, J. J. Org. Chem. 2011, 76, 7730.
- 5. Sharif, M.; Opalach, J.; Langer, P.; Beller, M.; Wu, X.-F. RSC Adv. 2014, 4, 8.
- Majumdar, B.; Mandani, S.; Bhattacharya, T.; Sarma, D.; Sarma, T. K. J. Org. Chem. 2017, 82, 2097.

<sup>1</sup>H and <sup>13</sup>C NMR Spectra of Quinazolinones



Figure S2: <sup>1</sup>H NMR of 3aa



Figure S3: <sup>13</sup>C NMR of 3aa





Figure S4: <sup>1</sup>H NMR of 3ba





-39.51

Figure S5: <sup>13</sup>C NMR of 3ba



Figure S6: <sup>1</sup>H NMR of 3ca



Figure S7: <sup>13</sup>C NMR of 3ca



Figure S8: <sup>1</sup>H NMR of 3da



Figure S9: <sup>13</sup>C NMR of 3da



Figure S10: <sup>1</sup>H NMR of 3ab



Figure S11: <sup>1</sup>H NMR of 3ea



Figure S12: <sup>13</sup>C NMR of 3ea



Figure S14: <sup>13</sup>C NMR of 3ha



Figure S15: <sup>1</sup>H NMR of 3ia



Figure S16: <sup>13</sup>C NMR of 3ia



Figure S17: <sup>1</sup>H NMR of 3ja



Figure S18: <sup>1</sup>H NMR of 3la



Figure S19: <sup>13</sup>C NMR of 3la



Figure S20: <sup>1</sup>H NMR of 3ma



Figure S21: <sup>13</sup>C NMR of 3ma



Figure S22: <sup>1</sup>H NMR of A



Figure S23: <sup>13</sup>C NMR of A