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Figure S1. (a) Raman spectra of PMo12-PPy/RGO, PMo12/RGO, and pure RGO, respectively. (b) 

FT-IR spectra of PMo12-PPy/RGO, PMo12, and pure RGO, respectively. 

 

 

Figure S2. (a) FE-SEM image of CoMo6-PPy/RGO. (b) TEM image of CoMo6-PPy/RGO. (c) 

FE-SEM image of PMo12/RGO. (d) TEM image of PMo12/RGO. 
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Figure S3. (a) HAADF-STEM image of PMo12/RGO and the corresponding EDS mapping of C, 

Mo, O and P elements, respectively. 

 

 

Figure S4. (a) Nitrogen adsorption-desorption isotherms of PMo12-PPy/RGO, PPy-CoMo6/RGO, 

PMo12/RGO, respectively. (b) The pore size distribution of the above samples by BJH method. 

 

 

Figure S5. (a) TGA results of PMo12 and (b) PMo12-PPy/RGO in O2 (10 I min
-1
). 
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Figure S6. XPS spectra of PMo12-PPy/RGO before and after discharged to 0.01 V. (a-d): As- 

synthesized powder. (a) As-synthesized powder survey scan, (b) Mo 3d, (c) C 1s, (d) N 1s, 

respectively. (e-f): Discharged at 0.01 V, (e) survey scan (f) Mo 3d, respectively. 
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Figure S7. (a) Cycle-life performance of PMo12-PPy/RGO, CoMo6–PPy/RGO and 

(NH4)6Mo7–PPy/RGO at a current density of 100 mA g
-1
. (b) Rate capability test for the 

PMo12-PPy/RGO, CoMo6–PPy/RGO and (NH4)6Mo7–PPy/RGO at various current densities 

(100–2000 mA g
-1
). 

 

 

Figure S8. (a) Cycle-life performance of PMo12-PPy/RGO, PMo12-PPy/RGO-1 and 

PMo12-PPy/RGO-2 at a current density of 100 mA g
-1
. (b) Cycle-life performance of 

PMo12-PPy/RGO, PMo12-PPy/RGO-3 and PMo12-PPy/RGO-4 at a current density of 100 mA g
-1
. 

 

 

Figure S9. Cycling performance of PMo12
_
PPy/RGO at 2.0 A g

-1
 after a few cycles at 100 mA g

-1
. 
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Figure S10. FESEM images of (a, b) PMo12
_
PPy/RGO electrode before and (c, d) PMo12

_
PPy/RGO 

(e) CoMo6–PPy/RGO (f) (NH4)6Mo7–PPy/RGO electrode after 50 cycles performed with a current 

density of 1.0 A g
-1
. 
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Table S1. Comparison of PMo12-PPy/RGO with other POMs-based anodes  

 

Materials CR(mA g
-1
) RC(mAh g

-1
) AR (%) Ref. 

 

PMo12
-
PPy/RGO 100 1082 70 This work 

 

NAM-EDAG 100 Above 1000 80 
1
 

 

[MnMo6O24]
9-
/SWNTs 0.5 mAcm

-2
 932 50 

2
 

 

Pyrene-Anderson-CNTs 0.5 mAcm
-2
 665 30 

3
 

 

Mo6O18-SCN 50 876 40 
4
 

 

SiW11– CNTs 
0.5 mAcm

-2
 650 30 

5
 

 

Py–SiW11/SWNTs 0.5 mAcm
-2
 580 30 

6
 

 

POMOF-1 500 350 65 
7
 

 

CR: Charge rate. RC: Reversible capacity. AR: Active material ratio. 

 

Calculation of the theoretical capacities. 

The theoretical capacities were calculated according to the equation:  

96500
(1)

3. 6 3. 6

nF n
Q

M M
= = L  

Where Q is the reversible charging–discharging capacity, n is the number of electrons passed 

during the redox reaction, and M is the molecular weight.  

POM: When Li
+
 intercalate/ deintercalate into the structure of PMo12, we have a hypothesis that 

the redox reactions of Mo
6+ 
can be changed to Mo

4+
 or Mo

0
. So, n (maximum)= 72, Q(POM maximum) = 

1057.38 mAh g
-1
. According to the TGA and experiment, we can calculate the content of the POMs 

is about 72.9%, Q(PMo12-PPy/RGO)= 1057.38×72.9%=835.16 mAh g
-1
. 
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