Supporting Information

Polyoxomolybdate-polypyrrole / reduced graphene oxide nanocomposite as high capacity electrodes for lithium storage

Mi Zhang,^a† Tao Wei,^{ab}† A-Man Zhang,^a Shun-Li Li,^a Feng-Cui Shen,^c Long-Zhang Dong,^a Dong- ShengLi ^d and Ya-Qian Lan^{*a}

^aJiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China E-mail: yqlan@njnu.edu.cn
^bSchool of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
^cCollege of Biological and Chemical Engineering, Anhui Polytechnic University, Wuh u 241000, P. R. China
^dSchool of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonme tallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R.China.

[†]These authors contribute equally to this work.

Table of Contents

I.	Raman spectra and FT-IR spectra of the samples	-S3-
II.	FE-SEM image and TEM image of the samples	-S3-
III.	HAADF-STEM image and the corresponding EDS mapping of PMo_{12}/RGO	-S4-
IV.	Nitrogen adsorption isotherms and the pore size distribution of the samples	-S4-
V.	TGA results of PMo ₁₂ and PMo ₁₂ -PPy/RGO	-S4-
VI.	XPS spectra of PMo_{12} -PPy/RGO before and after discharged to 0.01 V	-85-
VII.	Cycle-life performance and Rate capability test of the samples	-S6-
VIII.	Cycle-life performance and Rate capability test of the samples	-S6-
IX.	Cycling performance of PMo ₁₂ -PPy/RGO at 2.0 A g ⁻¹	-S6-
X.	FESEM image of the samples before and after 50 cycles	-S7-
XI.	Comparison of PMo12-PPy/RGO with other POMs-based anodes	-S8-

Figure S1. (a) Raman spectra of PMo₁₂-PPy/RGO, PMo₁₂/RGO, and pure RGO, respectively. (b) FT-IR spectra of PMo₁₂-PPy/RGO, PMo₁₂, and pure RGO, respectively.

Figure S2. (a) FE-SEM image of CoMo₆-PPy/RGO. (b) TEM image of CoMo₆-PPy/RGO. (c) FE-SEM image of PMo₁₂/RGO. (d) TEM image of PMo₁₂/RGO.

Figure S3. (a) HAADF-STEM image of PMo₁₂/RGO and the corresponding EDS mapping of C,

Figure S4. (a) Nitrogen adsorption-desorption isotherms of PMo₁₂-PPy/RGO, PPy-CoMo₆/RGO,

PMo₁₂/RGO, respectively. (b) The pore size distribution of the above samples by BJH method.

Figure S5. (a) TGA results of PMo_{12} and (b) PMo_{12} -PPy/RGO in O_2 (101 min⁻¹).

Figure S6. XPS spectra of PMo₁₂-PPy/RGO before and after discharged to 0.01 V. (a-d): Assynthesized powder. (a) As-synthesized powder survey scan, (b) Mo 3d, (c) C 1s, (d) N 1s, respectively. (e-f): Discharged at 0.01 V, (e) survey scan (f) Mo 3d, respectively.

Figure S7. (a) Cycle-life performance of PMo_{12} -PPy/RGO, $CoMo_6$ -PPy/RGO and $(NH_4)_6Mo_7$ -PPy/RGO at a current density of 100 mA g⁻¹. (b) Rate capability test for the PMo_{12} -PPy/RGO, $CoMo_6$ -PPy/RGO and $(NH_4)_6Mo_7$ -PPy/RGO at various current densities (100–2000 mA g⁻¹).

Figure S8. (a) Cycle-life performance of PMo_{12} -PPy/RGO, PMo_{12} -PPy/RGO-1 and PMo_{12} -PPy/RGO-2 at a current density of 100 mA g⁻¹. (b) Cycle-life performance of PMo_{12} -PPy/RGO, PMo_{12} -PPy/RGO-3 and PMo_{12} -PPy/RGO-4 at a current density of 100 mA g⁻¹.

Figure S9. Cycling performance of PMo₁₂-PPy/RGO at 2.0 A g⁻¹ after a few cycles at 100 mA g⁻¹.

Figure S10. FESEM images of (a, b) PMo_{12} -PPy/RGO electrode before and (c, d) PMo_{12} -PPy/RGO (e) $CoMo_6$ -PPy/RGO (f) $(NH_4)_6Mo_7$ -PPy/RGO electrode after 50 cycles performed with a current density of 1.0 A g⁻¹.

Materials	$CR(mAg^{-1})$	$RC(mAh g^{-1})$	AR (%)	Ref.
PMo ₁₂ PPy/RGO	100	1082	70	This work
NAM-EDAG	100	Above 1000	80	1
[MnMo ₆ O ₂₄] ⁹⁻ /SWNTs	0.5 mAcm ⁻²	932	50	2
Pyrene-Anderson-CNTs	0.5 mAcm ⁻²	665	30	3
Mo ₆ O ₁₈ -SCN	50	876	40	4
SiW ₁₁ -CNTs	0.5 mAcm ⁻²	650	30	5
Py-SiW ₁₁ /SWNTs	0.5 mAcm ⁻²	580	30	6
POMOF-1	500	350	65	7

Table S1. Comparison of PMo12-PPy/RGO with other POMs-based anodes

CR: Charge rate. RC: Reversible capacity. AR: Active material ratio.

Calculation of the theoretical capacities.

The theoretical capacities were calculated according to the equation:

$$Q = \frac{nF}{3.\,6M} = \frac{96500n}{3.\,6M} \cdots (1)$$

Where Q is the reversible charging–discharging capacity, n is the number of electrons passed during the redox reaction, and M is the molecular weight.

POM: When Li⁺ intercalate/ deintercalate into the structure of PMo₁₂, we have a hypothesis that the redox reactions of Mo⁶⁺ can be changed to Mo⁴⁺ or Mo⁰. So, $n_{\text{(maximum)}} = 72$, $Q_{\text{(POM maximum)}} = 1057.38 \text{ mAh g}^{-1}$. According to the TGA and experiment, we can calculate the content of the POMs is about 72.9%, $Q_{\text{(PMo12-PPy/RGO)}} = 1057.38 \times 72.9\% = 835.16 \text{ mAh g}^{-1}$.

References

- Xie, J.; Zhang, Y.; Han, Y.; Li, C., High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. *ACS Nano* 2016, *10* (5), 5304-13.
- Ji, Y.; Hu, J.; Huang, L.; Chen, W.; Streb, C.; Song, Y.-F., Covalent Attachment of Anderson-Type Polyoxometalates to Single-Walled Carbon Nanotubes Gives Enhanced Performance Electrodes for Lithium Ion Batteries. *Chemistry - A*

European Journal 2015, 21 (17), 6469-6474.

- Huang, L.; Hu, J.; Ji, Y.; Streb, C.; Song, Y. F., Pyrene-Anderson-Modified CNTs as Anode Materials for Lithium-Ion Batteries. *Chemistry* 2015, *21* (51), 18799-804.
- Nasim Khan, R. N.; Mahmood, N.; Lv, C.; Sima, G.; Zhang, J.; Hao, J.; Hou, Y.;
 Wei, Y., Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. *RSC Advances* 2014, *4* (15), 7374.
- (5) Chen, W.; Huang, L.; Hu, J.; Li, T.; Jia, F.; Song, Y.-F., Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. *Phys. Chem. Chem. Phys.* **2014**, *16* (36), 19668-19673.
- (6) Ma, D.; Liang, L.; Chen, W.; Liu, H.; Song, Y.-F., Covalently Tethered Polyoxometalate-Pyrene Hybrids for Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes as High-Performance Anode Material. *Adv. Funct. Mater.* 2013, 23 (48), 6100-6105.
- Yue, Y.; Li, Y.; Bi, Z.; Veith, G. M.; Bridges, C. A.; Guo, B.; Chen, J.; Mullins, D. R.; Surwade, S. P.; Mahurin, S. M.; Liu, H.; Paranthaman, M. P.; Dai, S., A POM–organic framework anode for Li-ion battery. *J. Mater. Chem. A* 2015, *3* (45), 22989-22995.