Supporting information

Biotransformation, using Recombinant CYP450-expressing Baker's Yeast Cells, Identifies a Novel CYP2D6.10^{A122V} Variant Which is a Superior Metaboliser of Codeine to Morphine Than the Wild-type Enzyme

Ibidapo S. Williams,[†] Linda Gatchie,[†] Sandip B. Bharate[‡] and Bhabatosh Chaudhuri[†]*

[†]CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester, LE1 5XY, UK

[‡]Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India

CONTENTS

Section S1.	Comparisons of the amino acid sequences of the four CYP2D6 proteins
Section S2.	A basic plasmid, YIpADH2S, used for cloning of the four human CYP2D6 alleles
Section S3.	Comparison of CYP2D6-C enzyme activities expressed from an integrated copy and an episomal plasmid, using EOMCC as a substrate.
Section S4.	Comparison of CYP2D6.10 enzyme activities expressed from an integrated copy and an episomal plasmid, using EOMCC as a substrate
Section S5.	TLC images of biotransformation experiment
Section S6.	Molecular modeling of thioridazine with CYP2D6 (4WNW)

Section S7. Molecular modeling of EOMCC substrate with CYP2D6 (4WNW) wild-type and 2D6-C

Section S1. Comparisons of the amino acid sequences of the four CYP2D6 proteins

	10	20	30	40	50 *	60 *
2D6-wt 2D6.1	MGLEALVPLAVIV MGLEALVPLAVIV	AIFLLLVDLM AIFLLLVDLM	HRRQRWAARYI HRRQRWAARYI	PGPLPLPGLG PGPLPLPGLG	GNLLHVDFQNI GNLLHVDFQNI	PYCFDQ PYCFDQ
200.10	MGLEALVPLAVIV.	АІҒЫЫ Ѵ ОЫМ.	IHKRQRWAAR I	РСРГЕГССС	MTTHADEÕNJ	PICEDQ
	70	80	90	100	110	120
206-11+		* ^// //////////////////////////////////	* *	* גממממ גיייטני	* סדייריד כדיכי	
2D6.1	LRRRFGDVFSLQL	AWIPVVVLNG	LAAVREALVI FLAAVREALVTI	IGEDIADRPPV IGEDTADRPPV	/PITQILGFGE /PITQILGFGE	RSOGVE
2D6.10	LRRRFGDVFSLQL	AWTPVVVLNG	LAAVREALVTH	IGEDTADRPPV	PITQILGFGE	PRSQGVF
	130	140	150	160	170	180
2D6-wt	LARYGPAWREQRR	FSVSTLRNLG	LGKKSLEQWVI	TEEAACLCAAF	ANHSGRPFRE	NGLLDK
2D6.1	LARYGPAWREQRR	FSVSTLRNLG	LGKKSLEQWVI	TEEAACLCAAF	ANHSGRPFRE	PNGLLDK
2D6.10	LARYGPAWREQRR	FSVSTLRNLG	LGKKSLEQWVI	FEEAACLCAAF	ANHSGRPFRE	NGLLDK
	190	200	210	220	230	240
	*	*	*	*	*	*
2D6-WC 2D6-1	AVSNVIASLTCGR	RFEYDDPRFI RFEYDDPRFI	RLLDLAQEGLI RIJDIAOEGLI	KEESGFLREVI KEESGFLREVI	NAVPVLLHIE NAVPVLLHIE	PALAGKV
2D6.10	AVSNVIASLTCGR	RFEYDDPRFL	RLLDLAQEGL	KEESGFLREVI	NAVPVLLHIE	PALAGKV
	250	260	270	280	290	300
	*	*	*	*	*	*
2D6-wt	LRFQKAFLTQLDE	LLTEHRMTWC	PAQPPRDLTE	AFLAEMEKAKO	SNPESSFNDEN	JLRIVVA
2D6.1 2D6.10	LRFQKAFLTQLDE LRFQKAFLTQLDE	LLTEHRMTWL LLTEHRMTWD	PAQPPRDLTEA PAQPPRDLTEA	AFLAEMEKAKO AFLAEMEKAKO	INPESSENDER INPESSENDEN	ILRIVVA ILRIVVA
	310	320	330 *	340	350 *	360 *
2D6-wt	DLFSAGMVTTSTT	LAWGLLLMII	HPDVQRRVQQE	EIDDVIGQVRF	RPEMGDQAHME	PYTTAVI
2D6.1	EIDDVIGQVRF	RPEMGDQAHME	YTTAVI			
206.10	DLFSAGMVTTSTT	∟А₩Ġ∟∟∟М⊥⊥	HPDVQKKVQQE	SIDDVIGQVRF	RPEMGDQAHME	YTTTAVI
	370	380	390	400	410	420
2D6-wt	, HEVQRFGDIVPLG	^ MTHMTSRDIE	VQGFRIPKGTI	^ TLITNLSSVLK	XDEAVWEKPFF	<pre></pre>
2D6.1	HEVQRFGDIVPLG	VTHMTSRDIE	VQGFRIPKGTI	TLITNLSSVLK	CDEAVWEKPFF	₹FHPEHF
2D6.10	HEVQRFGDIVPLG	VTHMTSRDIE	VQGFRIPKGTI	LITNLSSVLK	CDEAVWEKPFF	\FHPEHF
	430	440	450	460	470	480
		*	* •	*		*
2D6 1	LDAQGHEVKPEAF	LPFSAGRRAC LPFSAGRRAC	LGEPLARMELI	LEETSLLQHE TIFFTSIIOHE	SESVETGQEE	PSHHGV
2D6.10	LDAQGHFVKPEAF	LPFSAGRRAC	LGEPLARMELI	FLFFTSLLQHE	SISVIIGQII SFSVPTGQPF	<pre>XPSHHGV</pre>
	490					
2D6-wt	FAFLVSPSPYFLC	AVPR				
2D6.1	FAFLVSPSPYELC.	AVPR				
2D6.10	FAFLV T PSPYELC	AVPR				

Figure S1A. Aligned protein sequences of CYP2D6-wt (2D6-wt; NCBI Accession No M20403 for DNA sequence; NCBI Accession No AAA52153 for debrisoquine 4-hydroxylase_Homo sapiens protein sequence;¹⁰ CYP2D6.1

(2D6.1; NCBI Accession No NM_000106 for DNA sequence; NCBI Accession No NP_000097 for protein sequence (the NCBI database describes this as "cytochrome P450 2D6 isoform 1 [Homo sapiens]", i.e. CYP2D6.1;²⁹ and CYP2D6.10 (2D6.10; NCBI Accession No ABB01372), with dissimilar amino acid residues highlighted in red.

	10	20	30	40	50	60		
	*	*	*	*	*	*		
2D6.10	MGLEALVPLAVIV	AIFLLLVDLM	HRRQRWAARY	SPGPLPLPGLG	GNLLHVDFQNI	PYCFDQ		
2D6-C	MGLEALVPLAVIV	AIFLLLVDLM	HRRQRWAARY	SPGPLPLPGLO	GNLLHVDFQNI	PYCFDQ		
	70	80	90	100	110	120		
	*	*	*	*	*	*		
2D6.10 2D6-C	LRRRFGDVFSLQLI LRRRFGDVFSLQLI	AWTPVVVLNG AWTPVVVLNG	LAAVREALVTI LAAVREALVTI	HGEDTADRPPV HGEDTADRPPV	'PITQILGFGE 'PITQILGFGE	PRSQGVF PRSQGVF		
	130	140	150	160	170	180		
0.5.6 1.0	*	*	*	*	*	*		
2D6.10 2D6-C	LARYGPAWREQRRI L <mark>v</mark> rygpawreqrri	FSVSTLRNLG. FSVSTLRNLG	LGKKSLEQWV	FEEAACLCAAE FEEAACLCAAE	ANHSGRPFRE ANHSGRPFRE	NGLLDK		
	190	200	210	220	230	240		
	*	*	*	*	*	*		
2D6.10	AVSNVIASLTCGR	RFEYDDPRFL	RLLDLAQEGLI	KEESGFLREVI	NAVPVLLHIE	ALAGKV		
2D6-C	AVSNVIASLICGR	RFEIDDPRFL.	КШЬЛРАЙЕСТІ	AEESGF LREVI	JNAVPVLLHIE	'ALAGKV		
	250	260	270	280	290	300		
200 10	ים בעז הם גיז הים די ישר נסמי הם גיז הים די			*	*	*		
2D6.10 2D6-C	LRFQKAFLTQLDE. LRFQKAFLTQLDE:	LLTEHRMTWD	PAQPPRDLTE PAQPPRDLTE	AFLAEMEKAKO AFLAEMEKAKO	NPESSENDEN	ILRIVVA ILRIVVA		
	310	320	330	340	350	360		
0-6-40	*	*	*	*	*	*		
2D6.10 2D6-C	DLFSAGMVTTSTT: DLFSAGMVTTSTT:	LAWGLLLMIL LAWGLLLMIL	HPDVQRRVQQI HPDVQRRVQQI	EIDDVIGQVRF EIDDVIGQVRF	<pre>{PEMGDQAHME <pemgdqahme< pre=""></pemgdqahme<></pre>	YTTAVI YTTAVI		
	370	380	390	400	410	420		
	*	*	*	*	*	*		
2D6.10 2D6-C	HEVQRFGDIVPLGVTHMTSRDIEVQGFRIPKGTTLITNLSSVLKDEAVWEKPFRFHPEHF HEVQRFGDIVPLGVTHMTSRDIEVQGFRIPKGTTLITNLSSVLKDEAVWEKPFRFHPEHF							
	430	440	450	460	470	480		
0-6-40	*	*	*	*	*	*		
2D6.10 2D6-C	LDAQGHFVKPEAF LDAQGHFVKPEAF	LPFSAGRRAC LPFSAGRRAC	LGEPLARMEL] LGEPLARMEL]	FLFFTSLLQHE FLFFTSLLQHE	'SFSVPTGQPF 'SFSVPTGQPF	<pre></pre>		
	490							
	*							
2D6.10 2D6-C	FAFLVTPSPYELCA FAFLVTPSPYELCA	AVPR AVPR						

Figure S1B. Aligned protein sequences of CYPD6.10 (2D6.10; NCBI Accession No ABB01372) and CYP2D6-C (2D6-C), with the dissimilar amino acid residue, V122 in CYP2D6-C, highlighted in red.

Section S2. A basic plasmid, YIpADH2S, used for cloning of the four human CYP2D6 alleles

Figure S2. (A) Represents a basic plasmid, YIpADH2S, used for cloning of the four human CYP2D6 alleles that would allow integration of a CYP2D6 gene expression cassette into the yeast genome of the strain YY7 at the *HIS3* or *URA3* chromosomal locus. It contains the ethanol-inducible yeast ADH2 promoter (ADH2p) and the SUC2 transcription termination signal (SUC2t). The human CYP2D6 alleles were cloned as *BamHI-XbaI* fragments at the *BamHI*, *SpeI* sites of an integration plasmid that bears either the *HIS3* or *URA3* genes as an auxotrophic marker. (B) Shows an integration plasmid after cloning of a CYP2D6 allele downstream of the ADH2p in the plasmid, YIpADH2S. (C) Shows a basic episomal, 2µ-plasmid, pSYE263, that bears a functional *URA3* gene. The human CYP2D6 alleles were cloned as *BamHI-XbaI* fragments at the *BamHI*, *XbaI* sites of pSYE263. (D) Shows an episomal plasmid after cloning of a CYP2D6 allele downstream of the ADH2p in the plasmid, pSYE263. The term 'h_CYP2D6' represents any one of the four CYP2D6 alleles chosen for this study.

Section S3. Comparison of CYP2D6-C enzyme activities expressed from an integrated copy and an episomal plasmid, using EOMCC as a substrate. Figure S1 shows a comparison of CYP2D6 enzyme activities obtained from yeast strains containing expression cassettes for the CYP2D6-C allele integrated at the *HIS3* chromosomal locus and borne on an episomal plasmid.

Figure S3. The graph (A) compares the kinetics of enzyme activities of the CYP2D6-C (CYP2D6.10^{A122V}; 2D6-C) allele produced in the strain YY7 from gene expression cassettes either (i) integrated at the *HIS3* chromosomal locus or (ii) borne on an episomal plasmid (2µ). The kinetics of enzyme activity, present in ~1x 10⁶ cells, was followed over a time course of 76 min. The concentration of the fluorogenic substrate, EOMCC, used for each assay was 2 μ M. The amount of fluorescent product, *7-HCC*, formed was monitored at each time point using a fluorescent plate reader. The graphs represent the average of results obtained from three independent experiments. The bar plot (B) mirrors the fluorescence values in the graphs in (A), at time point 74 min. The data represent mean ± S.D. of three independent experiments. 'RFU' represents relative fluorescence units.

Section S4. Comparison of CYP2D6.10 enzyme activities expressed from an integrated copy and an episomal plasmid, using EOMCC as a substrate. Figure S2 shows a comparison of CYP2D6 enzyme activities obtained from yeast strains containing expression cassettes for the CYP2D6.10 allele integrated at the *HIS3* chromosomal locus and borne on an episomal plasmid.

Figure S4. The graph (A) compares the kinetics of enzyme activities of the CYP2D6.10 (2D6.10) allele produced in the strain YY7 from gene expression cassettes either (i) integrated at the *HIS3* chromosomal locus or (ii) borne on an episomal plasmid (2 μ). The kinetics of enzyme activity, present in ~1x 10⁶ cells, was followed over a time course of 49 min. The concentration of the fluorogenic substrate, EOMCC, used for each assay was 2 μ M. The amount of fluorescent product, *7-HCC*, formed was monitored at each time point using a fluorescent plate reader. The graphs represent the average of results obtained from three independent experiments. The bar plot (B) mirrors the fluorescence values in the graphs in (A), at time point 48 min. The data represent mean ± S.D. of three independent experiments. 'RFU' represents relative fluorescence units.

Section S5. TLC images of biotransformation experiment

Figure S5. TLC analysis of biotransformation reactions of codeine using yeast-expressed CYP2D6 enzymes. (A) Biotransformation of codeine using cells expressing CYP2D6.10 (6.10). Lane 1, codeine (standard); lane 2, morphine (standard); lane 3, codeine + CYP2D6.10 cells incubated for 24 h; lane 4; codeine + CYP2D6.10 cells incubated for 48 h; lane 5, codeine + CYP2D6.10 cells incubated for 72 h; lane 6, codeine + empty plasmid-containing cells incubated for 72 h. (B) Lane 1, morphine (standard); lane 2, norcodeine (standard); lane 3, codeine (standard); lane 4, normorphine (standard); lane 5, codeine + CYP2D6-C (CYP2D6.10^{A122V}) cells incubated for 72 h; lane 6, codeine + CYP2D6.1 (CYP2D7^{V374}) cells incubated for 72 h; lane 7, codeine + CYP2D6-wt (CYP2D7^{M374}) cells incubated for 72 h. Solvent system used for both TLCs was CHCl₃:MeOH:NH₃ = 36:1:0.6. Abbreviations: M, morphine; NC, norcodeine; C, codeine; NM, normorphine.

Section S6. Molecular modeling of thioridazine with CYP2D6 (4WNW)

Figure S6a. The interaction pattern of docked thioridazine with CYP2D6 (4WNW)

Figure S6b. The interaction pattern of thioridazine ligand from co-crystallized protein (4WNW)

Figure S6c. The overlay image of ligand from co-crystallized protein and the docked thioridazine with CYP2D6 (4WNW)

Section S7. Molecular modeling of EOMCC substrate with CYP2D6 (4WNW) wild-type and 2D6-C

Figure S7a. The conversion of EOMCC to its hydroxy metabolite via CYP2D6/ CYP1A2

Figure S7b. The interaction pattern of EOMCC ligand with CYP2D6-wild (Met 374).

Figure S7c. The interaction pattern of EOMCC ligand with CYP2D-C.