Surface Active Ionic Liquid Cholinium Dodecylbenzenesulfonate: Self-Assembling Behaviour and Interaction with Cellulase

Praveen Singh Gehlot[†], Akshay Kulshrestha[‡], Pankaj Bharmoria[†], Krishnaiah Damarla[†], Kaumeel Chokshi[†], Arvind Kumar[†][‡]*

[†]Academy of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G. B. Marg Bhavnagar-364002, Gujarat, India.

‡Salt and Marine Chemicals Discipline, Central Salt, and Marine Chemicals Research Institute,G. B. Marg Bhavnagar-364002, Gujarat, India.

*Corresponding Author E-mail: mailme_arvind@yahoo.com; arvind@csmcri.res.in Tel.: +91-278-2567039. Fax: +91-278-2567562.

Table of content

Anne	xure 1	Page S3
Annexure 2		Page S5
1.	Figure S1: A model of cellulase from Trichoderma reesei (fungi) based on templa	
	1EGN PDB85 file using Visual Molecular Dynamic software.	Page S5
2.	Figure S2: Chemical structure of Cho[DBS].	Page S5
3.	Figure S3: ¹ HNMR spectrum at 200MHz Cho[DBS] in DMSO-d _{6.}	Page S6
4.	Figure S4: Polynomial reduction in surface tension of water as function of Na[DBS]	
	in aqueous medium at 298.15 K. (CMC= 2.9 mmol.L ⁻¹).	Page S7
5.	Figure S5: Specific and Molar conductance of [Na]DBS at 298.15K in aqueous	
	medium (CMC= 3.4 mmol.L^{-1}).	Page S7
6.	Figure S6: Autocorrelation function of cellulase in Cho[DBS] solution.	Page S8
7.	Figure S7: Variation in the size of cellulase with concentration of Cho[DBS].	
		Page S8
Reference		Page S9

Supporting information

Annexure 1.

1. The Adsorption efficiency of surfactant at air-water interface is estimated by measuring pC_{20} using the relation (1)

$$pC_{20} = -\log C_{20}$$
....(1)

where, C_{20} is the concentration needed to reduce the surface tension of the solvent (water in the present case) by 20mN.m⁻¹. The higher pC_{20} value indicates high adsorption efficiency of the surfactant¹.

2. The effectiveness of surface tension reduction is the other parameter that measures the adsorption efficiency of a surfactant, denoted by π_{CMC} and calculated using the relation (2).

where γ_{H_2O} stands for the surface tension of the pure water and γ_{CMC} stands for the surface tension of the solvent medium at CMC¹.

3. The amount of surfactants adsorbed at the interface is estimated from relative surface excess concentration (Γ_{max}). The values Γ_{max} of at the CMC have been calculated using Gibbs adsorption Eq. 3 from the least-squares slope of the γ versus log C plot.

$$\Gamma_{\max} = -\frac{1}{nRT} \frac{\partial \gamma}{\partial \ln C}....(3)$$

Where " $\partial \gamma / \partial \ln C$ " is the slope of $\gamma - \ln C$ the plot in the pre-*CMC* region.⁵⁻⁷ and n is Gibbs adsorption coefficient. In the current paper, it is used 2 due to ionic dissociation of [Chol]DBS in an aqueous medium¹.

4. The minimum area occupied by monomers at the interface was calculated using equation 4.

$$A_{\min} = \frac{10^{16}}{\Gamma_{\max}.N_A}.....(4)$$

Where N_A is Avogadro number and the factor of 10^{16} arises as a conversion factor of the area from nm² to Å¹.

5. Gibbs free energy of micellization :

$$\Delta G_{mic}^{o} = (1+\beta)RT \ln X_{cmc}....(5)$$

Where β is the 1- α and α has been calculated from conductivity measurement. α is the ratio of the slope of the post-CMC region and pre-CMC region¹.

6. Gibbs Free energy of adsorption¹:

$$\Delta G_{ad}^o = \Delta G_{mic}^o - \frac{\pi_{CMC}}{\Gamma_{\max}}.....(6)$$

7. Enzyme activity (IU):

$$1U = \frac{C}{M \times t \times V}.$$
(7)

The c= concentration of sugar released, M is molecular weight of sugar, t is a time of incubation and V is the volume of enzyme used².

8. Kaputinskii equation:

$$U_{L} = -K \frac{v | z^{+} | z^{-} |}{r^{+} r^{-}} \left(1 - \frac{d}{r^{+} r^{-}} \right) = -----(1)$$

Where UL, z, r, and v, represent the lattice enthalpy, ion charges, radii and stoichiometric coefficient (e.g. 2 for NaCl) respectively. The terms K and d, are salt specific constants³.

Annexure 2.

Figure S1. A model of cellulase from *Trichoderma reesei* (fungi) based on template 1EGN PDB85 file using Visual Molecular Dynamic software.

Figure S2. Chemical structure of Cho[DBS].

The ¹H NMR spectrum of synthesized Cho[DBS] was recorded in deuterated DMSO using a Brüker 200 MHz spectrometer. Before measurement, Cho[DBS] was dried in vacuum oven.

¹*HNMR 200 MH_z*: Cho[DBS]. In DMSO-d₆ Chemical shift value for proton (δ_{H}) in ppm: 7.517(d, 2H of -S-C=CH-), 7.100 (d, 2H of C–C=CH-), 3.818 (m, 2H of N-CH₂-CH₂-O), 3.390 (t, 2H N-CH₂-CH₂-O), 3.097 (s, 9H of 3× -CH₃), 1.429 (m),1.170 (m), 0.800 (m), 0.684 (t) of – C₁₂H₂₅.

Figure S3. ¹HNMR spectrum at 200MHz Cho[DBS] in DMSO-d₆

Figure S4. Polynomial reduction in surface tension of water as function of Na[DBS] in aqueous medium at 298.15 K. (CMC= 2.9 mmol.L⁻¹)

Figure S5. Specific and Molar conductance of [Na]DBS at 298.15K in aqueous medium (CMC= 3.4 mmol.L⁻¹)

Figure S6. Autocorrelation function of cellulase in Cho[DBS] solution.

Figure S7. Variation in the size of cellulase with concentration of Cho[DBS].

Reference:

Gehlot, P. S.; Rao, K. S.; Bharmoria, P.; Damarla, K.; Gupta, H.; Drechsler, M.; Kumar,
A., Spontaneous Formation of Multiarchitecture Vesicles of [C8mim]Br + [Na]DBS in Aqueous
Medium: Synergic Interplay of Electrostatic, Hydrophobic, and pi-pi Stacking Interactions. *J Phys Chem B* 2015, *119*, 15300-9.

2. Bharmoria, P.; Mehta, M. J.; Pancha, I.; Kumar, A., Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution. *The Journal of Physical Chemistry B* **2014**, *118*, 9890-9899.

3. Kapustinskii, A., Lattice energy of ionic crystals. *Quarterly Reviews, Chemical Society* **1956**, *10*, 283-294.