Supporting Information

for

Synthesis of Aryl Iodides from Arylhydrazines and Iodine

Chun-ping Dong,^a Kentaro Nakamura,^a Toshihide Taniguchi,^b Soichiro Mita,^a Shintaro Kodama,^a Shin-ichi Kawaguchi,^c Akihiro Nomoto,^a Akiya Ogawa, ^{*,a} and Takumi Mizuno^d

^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan ^bSeika Corporation, 1-1-82 Kozaika, Wakayama 641-0007, Japan ^cCenter for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan ^dMorinomiya Center, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan

ogawa@chem.osakafu-u.ac.jp

CONTENTS

	page
Table S1. Optimization of the Iodination of Arylhydrazines with Iodine Using Several Bases	S2
The Procedure of Using <i>tert</i> -Butylhydrazine Hydrochloride as Substrate.	S2
Copies of ¹ H NMR and ¹³ C{ ¹ H} NMR Spectra of Compounds 2a–v, 2x–a'	S3–S28

NHNH ₂ ·	HCI I ₂ (0.5 mmol), bas	e I	
cı	DMSO (1.5 mL)		
1a (0.5 mmol)	60 °C, 6 h	2a	
entry	base (mmol)	yield ^{b} (%)	
1	Li ₂ CO ₃ (0.5)	21	
2	Na ₂ CO ₃ (0.5)	62	
3	K ₂ CO ₃ (0.5)	59	
4	$Cs_2CO_3(0.5)$	63	
5	K ₃ PO ₄ (0.5)	63	
6	Et ₃ N (0.5)	48	
7	DBU (0.5)	29	
8	K ₂ HPO ₄ (0.5)	45	
9	KOAc (1.0)	62	
10	KOH (1.0)	44	
11	KOH (0.5)	45	
12	NaHCO ₃ (1.0)	46	
13	NaHCO ₃ (0.5)	31	
^a Conditions: 1a, I ₂ , base, and solvent were stirred at			

 Table S1. Optimization of the Iodination of Arylhydrazines with Iodine Using

 Several Bases^a

^{*a*}Conditions: **1a**, I₂, base, and solvent were stirred at 60 °C for 6 h. ^{*b*}Determined by ¹H NMR spectroscopy of the crude mixture using 1,3,5-trioxane as an internal standard.

The Procedure of Using *tert*-Butylhydrazine Hydrochloride as Substrate. *tert*-Butylhydrazine hydrochloride (62.3 mg, 0.5 mmol), I₂ (126.9 mg, 0.5 mmol), and DMSO (0.1 mL) were added to a round-bottomed flask, and the reaction mixture was stirred at 60 °C for 6 h under air. The resulting mixture was cooled to room temperature and directly analyzed by ¹H NMR (CDCl₃). As a result, the peak of 2-iodo-2-methlpropane (1.81 ppm) was not detected. Then, sat. Na₂S₂O₈ (aq., 5 mL) and water (10 mL) were added into the combined reaction mixture. The mixture was extracted with CHCl₃ (4×5 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was analyzed by GC-MS, and unfortunately, GC-MS spectra also indicated no formation of 2-iodo-2-methlpropane (184 *m/z*).

Figure S1: ¹H and ¹³C{¹H} NMR Spectra of Compound 2a

Figure S2: ¹H and ¹³C{¹H} NMR Spectra of Compound 2b

Figure S3: ¹H and ¹³C{¹H} NMR Spectra of Compound 2c

Figure S4: ¹H and ¹³C{¹H} NMR Spectra of Compound 2d

Figure S5: ¹H and ¹³C{¹H} NMR Spectra of Compound 2e

Figure S6: ¹H and ¹³C{¹H} NMR Spectra of Compound 2f

Figure S7: ¹H and ¹³C{¹H} NMR Spectra of Compound 2g

Figure S9: ¹H and ¹³C{¹H} NMR Spectra of Compound 2i

Figure S13: ¹H and ¹³C{¹H} NMR Spectra of Compound 2m

Figure S14: ¹H and ¹³C{¹H} NMR Spectra of Compound 2n

Figure S15: ¹H and ¹³C{¹H} NMR Spectra of Compound 20

Figure S16: ¹H and ¹³C{¹H} NMR Spectra of Compound 2p

Figure S18: ¹H and ¹³C{¹H} NMR Spectra of Compound 2r

Figure S19: ¹H and ¹³C{¹H} NMR Spectra of Compound 2s

Figure S20: ¹H and ¹³C{¹H} NMR Spectra of Compound 2t

Figure S21: ¹H and ¹³C{¹H} NMR Spectra of Compound 2u

Figure S23: ¹H and ¹³C{¹H} NMR Spectra of Compound 2x

Figure S24: ¹H and ¹³C{¹H} NMR Spectra of Compound 2y

Figure S25: ¹H and ¹³C{¹H} NMR Spectra of Compound 2z

Figure S26: ¹H and ¹³C{¹H} NMR Spectra of Compound 2a'