Supplementary Information

Effect of Differences in the Primary Structure of the A-chain on the Aggregation of Insulin Fragments

Paul P. Nakka^{\dagger *}, Ke Li^{\dagger *} and Daniel Forciniti^{\dagger *}

[†] Kielhorn Research Laboratory, Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, Missouri 65409, United States

* To whom correspondence should be addressed:

Email: forcinit@mst.edu

Tel: 5733414427

Figure S1. Second-derivative spectra for native BIF (-) and its curve-fitted peaks.

Figure S3. A) FTIR spectra for HIF at pH 1.6, 60°C, 1M urea, 0.02M NaCl collected at t = 0 days (—) and t = 42 days (—) showing the shift in the amide I region. B) Second-derivative spectra for HIF at pH 1.6, 60°C, 1M urea, 0.02M NaCl collected at the end of week-1 (—) and its curve-fitted peaks.

Figure S4. Micrographs of the samples stained with Congo Red for A) BIF at pH 1.6, 25°C, 0M urea, 0.02M NaCl B) HIF at pH 1.6, 25°C, 0M urea, 0.02M NaCl.

Figure S5. Micrographs of the samples stained with Congo Red for A) BIF at pH 1.6, 25°C, M urea, 1M NaCl B) HIF at pH 1.6, 25°C, 1M urea, 1M NaCl.

Figure S6. Micrographs of the samples stained with Congo Red for A) BIF at pH 1.6, 60°C, 0M urea, 1M NaCl B) HIF at pH 1.6, 60°C, 0M urea, 1M NaCl.

Figure S7. Micrographs of the samples stained with Congo Red for A) BIF at pH 5, 25°C, 0M urea, 1M NaCl B) HIF at pH 5, 25°C, 0M urea, 1M NaCl.

Figure S8. Micrographs of the samples stained with Congo Red for A) BIF at pH 5, 25°C, 1M urea, 0.02M NaCl B) HIF at pH 5, 25°C, 1M urea, 0.02M NaCl.

Figure S9. Micrographs of the samples stained with Congo Red for A) BIF at pH 5, 60°C, 1M urea, 1M NaCl B) HIF at pH 5, 60°C, 1M urea, 1M NaCl.

Figure S10. Pareto charts showing the effect of various factors based on K_{β} as an outcome from the experimental design FF0508 for A) BIF and B) HIF.

Figure S11. LC-MS of native BIF showing the native BIF (with 1 and 3 Lys tail) and impurity (Fmoc-BIF) with their respective mass (top) and relative abundance (below) shown over each peak.

Figure S12. LC-MS of native HIF showing the native HIF, truncated HIF (with Fmoc) and impurity (Fmoc-HIF) with their respective mass (top) and relative abundance (below) shown over each peak.

MS/MS Spectrum of peptide 677.839 m/z (2+); 1353.7 Da

Figure S13. LC-MS/MS spectrum of native BIF (1353.7 Da) showing detailed sequence analysis.

MS/MS Spectrum of peptide 552.297 m/z (3+) 1654.88 Da

Figure S14. LC-MS/MS spectrum of native HIF (1654.88 Da) showing detailed sequence analysis.

Figure S15A. LC-MS graph of fibrils obtained after the experiment for BIF at pH 1.6, 60°C, 1M urea, 0.02M NaCl showing the relative abundance of Fmoc-BIF.

Figure S15B. LC-MS graph of fibrils obtained after the experiment for BIF at pH 5, 25°C, 1M urea, 0.02M NaCl showing the relative abundance of Fmoc-BIF.

Figure S16A. LC-MS graph of fibrils obtained after the experiment for BIF at pH 1.6, 60°C, 1M urea, 0.02M NaCl showing the relative abundance of Fmoc-HIF.

Figure S16B. LC-MS graph of fibrils obtained after the experiment for BIF at pH 5, 25°C, 1M urea, 0.02M NaCl showing the relative abundance of Fmoc-HIF.

Figure S17. β-index for A) BIF and B) HIF at pH 1.6, 25°C, 0M urea, 0.02M NaCl (—■—); pH 1.6, 25°C, 1M urea, 1M NaCl (—●—); pH 1.6, 60°C, 0M urea, 1M NaCl (—●—); pH 1.6, 60°C, 1M urea, 0.02M NaCl (—●—); pH 5, 25°C, 0M urea, 1M NaCl (—●—); pH 5, 25°C, 1M urea, 0.02M NaCl (—●—); pH 5, 60°C, 0M urea, 0.02M NaCl (—●—); pH 5, 60°C, 1M urea, 1M NaCl (—●)

Proton chemical shift (ppm)						
Amino	Hα	H_{β}	Η _γ	H_{δ}	Hε	
Acid						
Ala	4.25	1.35	-	-	-	
Ser	4.46	3.65	-	-	-	
Val	4.17	2.28	0.96	-	-	
Cys	4.62	3.32	-	-	-	
Leu	4.35	1.77	-	0.66	-	
Tyr	-	2.84	-	7.07,6.59	-	
Gln	4.21	2.09	2.5	-	6.67	
Glu	4.01	1.9	2.24	-	-	
Asn	-	2.76	-	-	-	
Lys	4.29	1.81	1.39	1.58	2.88	

Table S1. ¹H NMR chemical shifts for BIF.

Proton chemical shift (ppm)							
Amino	Hα	H_{β}	H_{γ}	H_{δ}	Hε		
Acid							
Thr	4.38	4.11	1.09	-	-		
Ser	4.46	3.65	-	-	-		
Ile	3.99	1.78	1.21	0.67	-		
Cys	4.62	3.32	-	-	-		
Leu	4.35	1.77	-	0.66	-		
Tyr	-	2.84	-	7.07,6.59	-		
Gln	4.21	2.09	2.5	-	6.67		
Glu	4.01	1.9	2.24	-	-		
Asn	-	2.76	-	-	-		
Lys	4.29	1.81	1.39	1.58	2.88		

Table S2. ¹H NMR chemical shifts for HIF.

Table S3. FTIR deconvoluted peaks corresponding to

Wavenumber (cm ⁻¹)	Week-1	Week-6
	1633	1619
HIF	1667	1649
	1686	1696

HIF at pH 1.6, 60 °C, 1M urea, 0.02M NaCl.