Structural Analysis of the Complexation of Uranyl, Neptunyl, Plutonyl, and Americyl with Cyclic Imide Dioximes

Deborah A. Penchoff,[†]^{‡*} Charles C. Peterson,[§] Jon P. Camden,^{††} James A. Bradshaw,^{‡‡} John D. Auxier II,^{§§}^{†††} George K. Schweitzer,^{‡‡‡} David M. Jenkins,^{‡‡‡} Robert J. Harrison, ^{§§§}^{††††} * Howard L. Hall[†]^{‡‡} §§ *

[†]Institute for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Tennessee 37996, USA [‡]Joint Institute for Computational Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Bldg. 5100, Oak Ridge, Tennessee 37831, USA

[§]University Information Technology, University of North Texas, 225 S. Avenue B, Denton, Texas 76201, USA

⁺⁺Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana, 46556, USA

^{‡‡} Y-12 National Security Complex, 602 Scarboro Rd, Oak Ridge, Tennessee, 37830, USA, 37831, USA

^{§§} Department of Nuclear Engineering, University of Tennessee, 301 Middle Dr., Pasqua Nuclear Engineering Bldg., Knoxville, Tennessee, 37996, USA

^{***}Radiochemistry Center of Excellence (RCOE), University of Tennessee, 1508 Middle Dr., Ferris Hall, Knoxville, Tennessee 37996, USA

***Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee, 37996, USA ^{§§§}Institute for Advanced Computational Science, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11790 USA,

****Computational Sciences Center, Brookhaven National Laboratory, Bldg. 463B, Upton, New York, 11973, USA

Table S.1 shows the magnitude of complex frequencies from vibrational frequency calculations for all compounds.

Table S.2 shows the contribution from zero-point energy (ZPE) corrections to the Gibbs free energy (Δ G) of reaction.

Table S.3 shows the contribution from the entropy (S) onto the Gibbs free energy (ΔG) of reaction.

Table S.4 shows the partial charges calculated with NBO for AnO_2^{2+} , backbone, HX⁻, NO_3^{-} , and CH_3OH fragments in $AnO_2(HX)(NO_3)(CH_3OH)$, and $AnO_2(HX)_2$, with An = U, Np, Pu, and Am, and HX = HA, HB, and HC.

Table S.5 shows the bond length differences between calculated and experimental values for U-O1, U-O3, U-O4, U-N2, and N3-O4 (Å).

Table S.6 shows interatomic distance in backbone in H_2X , $AnO_2(HX)(NO_3)(CH_3OH)$, and $AnO_2(HX)_2$.

Table S.7 shows the calculated normalized $\Delta(\Delta G)_{rxn}$ for AnO₂(HX)(NO₃)(CH₃OH), and AnO₂(HX)₂, with An = U, Np, Pu, Am, and HX = HA, HB, and HC.

Additionally, structural characteristics, population analysis, and relative Gibbs free energies of reaction for uranyl compounds are studied with the recently developed Strongly Constrained and Appropriately Normed Semilocal (SCAN) density functional revealing that U-O distances are between 0.01 and 0.05Å from those in structures optimized with the B3LYP functional. Differences in partial charges between the uranyl fragment and the backbone of the ligands are less than 0.2 units lower when calculated with SCAN than with B3LYP. Relative Gibbs free energies of reaction calculated with SCAN are between 2 and 28 kcal mol-1 from those calculated with the B3LYP functional.

Table S.8 shows the difference in predicted U-X (with X = O1, O2, O3, O4, N2, OI, OII, and OIII) distances, and O3-U-O4 angle in $UO_2(HX)(NO_3)(CH_3OH)$ and $UO_2(HX)_2$ (with HX = HA, HB, and HC) optimized with the SCAN and B3LYP functionals.

Table S.9 shows difference in calculated partial charge between the uranyl fragment and backbone in $UO_2(HX)(NO_3)(CH_3OH)$ and $UO_2(HX)_2$ (with HX = HA, HB, and HC) structures optimized with the SCAN and B3LYP functionals.

Table S.10 shows the calculated $\Delta(\Delta G)_{rxn}$ with the B3LYP and SCAN functionals (according to Eq. 1, and 2) for UO₂(HX)(NO₃)(CH₃OH), and UO₂(HX)₂ (with HX = HA, HB, and HC) with respect to UO₂(HB)(NO₃)(CH₃OH) (as shown in Eq. 3.a and 3.b), and shown in kcal mol⁻¹.

	a a manalass for a sus a man		- I f	laulatiana fan all	
Table S T-a. Magnitude of	complex treatiend	les from vibration	al tredilency ca	iculations for all	compounds
Tuble 5.1 d. Magintade 61	complex negacine		ar negaciney ca	iculations for an	compounds.

Compound	U	Np	Pu	Am
AnO ₂ (HA)(NO ₃)(CH ₃ OH)	11	29	15	-
AnO ₂ (HB)(NO ₃)(CH ₃ OH)	18	30	-	-
AnO ₂ (HC)(NO ₃)(CH ₃ OH)	-	17	24	-
AnO ₂ (HA) ₂	73 and 23	53 and 16	41 and 31	40
AnO ₂ (HB) ₂	69 and 20	77 and 52	36 and 24	-
AnO ₂ (HC) ₂	69	71 and 9	22	-

Table S.1-b: Magnitude of complex frequencies from vibrational frequency calculations for uranyl compounds calculated with the SCAN and B3LYP functionals. [Note that these optimizations are performed with NWChem 6.8 whereas other B3LYP predicted properties in this study are calculated with NWChem 6.5 and 6.6].

Functional	Compound	Magnitude
	UO ₂ (HA)(NO ₃)(CH ₃ OH)	10.62
	UO ₂ (HB)(NO ₃)(CH ₃ OH)	19.56
סעוכס	UO ₂ (HC)(NO ₃)(CH ₃ OH)	-
DOLIP	$UO_2(HA)_2$	79.33 and 28.26
	$UO_2(HB)_2$	73.01 and 11.44
	$UO_2(HC)_2$	68.60
	$UO_2(HA)(NO_3)(CH_3OH)$	69.16 and 52.73
	UO ₂ (HB)(NO ₃)(CH ₃ OH)	98.65 and 58.12
SCAN	UO ₂ (HC)(NO ₃)(CH ₃ OH)	18.94
SCAN	$UO_2(HA)_2$	18.87 and 7.04
	UO ₂ (HB) ₂	67.37, 38.25, and 25.30
	$UO_2(HC)_2$	27.19

Table S.2: Contribution from zero-point energy (ZPE) correction onto the Gibbs free energy (Δ G) of the compound. [Calculated as ZPE/ Δ G x 100].

Compound		Ne	Du	A 100
Compound	U	чр	Pu	Am
AnO ₂ (HA)(NO ₃)(CH ₃ OH)	0.01%	0.01%	0.01%	0.01%
AnO ₂ (HB)(NO ₃)(CH ₃ OH)	0.01%	0.01%	0.01%	0.01%
AnO ₂ (HC)(NO ₃)(CH ₃ OH)	0.01%	0.01%	0.01%	0.01%
AnO ₂ (HA) ₂	0.02%	0.02%	0.02%	0.02%
AnO ₂ (HB) ₂	0.02%	0.01%	0.01%	0.01%
AnO ₂ (HC) ₂	0.02%	0.02%	0.02%	0.02%

Compound	U	Np	Pu	Am
AnO ₂ (HA)(NO ₃)(CH ₃ OH)	0.00001%	0.00001%	0.00001%	0.00001%
AnO ₂ (HB)(NO ₃)(CH ₃ OH)	0.00001%	0.00001%	0.00001%	0.00001%
AnO ₂ (HC)(NO ₃)(CH ₃ OH)	0.00002%	0.00001%	0.00001%	0.00001%
AnO ₂ (HA) ₂	0.00001%	0.00001%	0.00001%	0.00001%
AnO ₂ (HB) ₂	0.00001%	0.00001%	0.00001%	0.00001%
AnO ₂ (HC) ₂	0.00001%	0.00001%	0.00001%	0.00001%

Table S.3: Contribution from the entropy (S) onto the Gibbs free energy (ΔG) of the compound. [Calculated as S/ $\Delta G \times 100$].

Table S.4: Partial charges calculated with NBO for AnO_2^{2+} , backbone, HX^- , NO_3^- , and CH_3OH fragments in $AnO_2(HX)(NO_3)(CH_3OH)$, and $AnO_2(HX)_2$, with An = U, Np, Pu, and Am, and HX = HA, HB, and HC.

Freemant	A m	AnO ₂ (HA)(NO ₃)	AnO ₂ (HB)(NO ₃)	AnO ₂ (HC)(NO ₃)	AmO (11A)	AmO (UD)	AmO (UC)
Fragment	An	(CH₃OH)	(CH₃OH)	(CH₃OH)	AnO ₂ (HA) ₂	AnO ₂ (HB) ₂	
	U	0.75	0.78	0.74	0.72	0.78	0.71
AmO ²⁺	Np	0.70	0.73	0.70	0.69	0.74	0.66
AnO ₂ ²⁺	Pu	0.67	0.70	0.67	0.63	0.70	0.61
	Am	0.73	0.75	0.72	0.71	0.75	0.69
	U	-1.13	-1.15	-1.16	-1.09	-1.11	-1.14
Backbone	Np	-1.09	-1.13	-1.14	-1.06	-1.08	-1.11
(O3-N1-C1-N2-C2-N3-O4)	Pu	-1.07	-1.11	-1.12	-1.02	-1.07	-1.09
	Am	-1.11	-1.13	-1.16	-1.05	-1.08	-1.12
	U	-0.33	-0.38	-0.32	-0.36	-0.39	-0.35
117	Np	-0.31	-0.36	-0.31	-0.34	-0.37	-0.33
HX	Pu	-0.28	-0.34	-0.28	-0.31	-0.35	-0.31
	Am	-0.33	-0.37	-0.33	-0.35	-0.37	-0.34
	U	-0.56	-0.55	-0.56	-	-	-
NO -	Np	-0.53	-0.52	-0.54	-	-	-
NO ₃	Pu	-0.54	-0.52	-0.53	-	-	-
	Am	-0.53	-0.52	-0.53	-	-	-
	U	0.14	0.15	0.14	-	-	-
	Np	0.14	0.15	0.14	-	-	-
CH₃OH	Pu	0.14	0.16	0.15	-	-	-
	Am	0.14	0.15	0.14	-	-	-

Table S.5: Bond length differences between calculated and experimental values for U-O1, U-O3, U-O4, U-N2, and N3-O4 (Å). Bond lengths for UO₂(HA)(NO₃)(CH₃OH) are reported by Bernstein, et. al.¹ Bond lengths for UO₂(HC)₂ are reported by Tian, et. al.²]

	Compound	Experimental	Calculated	Difference
11.01	UO ₂ (HA)(NO ₃)(CH ₃ OH)	1.781	1.775	-0.006
0-01	UO ₂ (HC) ₂	1.785	1.781	-0.004
11.02	UO ₂ (HA)(NO ₃)(CH ₃ OH)	2.398	2.435	0.037
0-03	UO ₂ (HC) ₂	2.535	2.510	-0.025
11.04	UO ₂ (HA)(NO ₃)(CH ₃ OH)	2.420	2.504	0.084
0-04	UO ₂ (HC) ₂	2.430	2.510	0.080
11 N2	UO ₂ (HA)(NO ₃)(CH ₃ OH)	2.514	2.616	0.102
U-N2	UO ₂ (HC) ₂	2.563	2.657	0.094
N2 04	UO ₂ (HA)(NO ₃)(CH ₃ OH)	1.371	1.332	-0.039
143-04	UO ₂ (HC) ₂	1.362	1.326	-0.036

Table S.6: Interatomic distance in backbone in H₂X, AnO₂(HX)(NO₃)(CH₃OH), and AnO₂(HX)₂, with An = U, Np, Pu, and Am, and X = A, B, C.

Values	An	AnO ₂ (HA)(NO ₃) (CH ₃ OH)	AnO ₂ (HB)(NO ₃) (CH ₃ OH)	AnO ₂ (HC)(NO ₃) (CH ₃ OH)	AnO ₂ (HA) ₂	AnO ₂ (HB) ₂	AnO ₂ (HC) ₂	H₂A	H₂B	H₂C
	U	1.320	1.322	1.326	1.319	1.323	1.326			
02 N1	Np	1.318	1.319	1.324	1.319	1.325	1.326	1 415	1.415 1.415	1 4 2 4
05-N1	Pu	1.320	1.319	1.325	1.319	1.322	1.326	1.415		1.424
	Am	1.317	1.319	1.324	1.318	1.322	1.324			
	U	1.318	1.310	1.309	1.319	1.312	1.311			
N1 C1	Np	1.318	1.310	1.309	1.320	1.312	1.311	1 201	1 202	1 204
NI-CI	Pu	1.319	1.311	1.310	1.321	1.312	1.312	1.291	1.282	1.284
	Am	1.318	1.310	1.309	1.320	1.312	1.312			
	U	1.348	1.351	1.347	1.343	1.347	1.341			
C1-N2	Np	1.349	1.352	1.348	1.343	1.347	1.340	1.380	1.388	1.383
CI-NZ	Pu	1.347	1.352	1.347	1.341	1.349	1.340			
	Am	1.349	1.352	1.349	1.343	1.348	1.341			
	U	1.340	1.344	1.338	1.343	1.347	1.341			
N2 C2	Np	1.339	1.344	1.337	1.343	1.348	1.340	1 200	1 200	1 202
NZ-CZ	Pu	1.340	1.344	1.337	1.341	1.349	1.340	1.560	1.300	1.365
	Am	1.340	1.344	1.338	1.343	1.348	1.341			
	U	1.320	1.312	1.313	1.319	1.312	1.311			
C2-N3	Np	1.320	1.312	1.313	1.320	1.312	1.311	1 201	1 282	1 28/
CZ-N3	Pu	1.321	1.313	1.313	1.321	1.312	1.312	1.291	1.202	1.204
	Am	1.320	1.313	1.313	1.320	1.312	1.312			
	U	1.332	1.334	1.336	1.319	1.323	1.326			
N3-04	Np	1.334	1.335	1.337	1.319	1.321	1.326	1 415	1 415	1 4 2 4
113-04	Pu	1.331	1.334	1.337	1.319	1.322	1.326	1.415	1.415	1.424
	Am	1.332	1.334	1.335	1.318	1.322	1.324			

Table S.7: Calculated $\Delta(\Delta G)_{rxn}$ according to Eq. 1, and 2 for AnO₂(HX)(NO₃)(CH₃OH), and AnO₂(HX)₂, with An = U, Np, Pu, Am, and HX = HA, HB, and HC. Results are normalized to AmO₂(HB)(NO₃)(CH₃OH), and shown in kcal mol⁻¹.

Compound	$\Delta(\Delta G)_{rxn}$ normalized to AmO ₂ (HB)(NO ₃)(CH ₃ OH)
UO ₂ (HA)(NO ₃)(CH ₃ OH)	-19.591
NpO ₂ (HA)(NO ₃)(CH ₃ OH)	-19.376
PuO ₂ (HA)(NO ₃)(CH ₃ OH)	-26.248
AmO ₂ (HA)(NO ₃)(CH ₃ OH)	-10.290
UO ₂ (HB)(NO ₃)(CH ₃ OH)	-8.728
NpO ₂ (HB)(NO ₃)(CH ₃ OH)	-8.495
PuO ₂ (HB)(NO ₃)(CH ₃ OH)	-16.797
AmO ₂ (HB)(NO ₃)(CH ₃ OH)	-
UO ₂ (HC)(NO ₃)(CH ₃ OH)	-28.840
NpO ₂ (HC)(NO ₃)(CH ₃ OH)	-27.415
PuO ₂ (HC)(NO ₃)(CH ₃ OH)	-34.568
AmO ₂ (HC)(NO ₃)(CH ₃ OH)	-18.753
UO ₂ (HA) ₂	-42.638
NpO ₂ (HA) ₂	-40.559
PuO ₂ (HA) ₂	-48.479
AmO ₂ (HA) ₂	-31.132
UO ₂ (HB) ₂	-22.666
NpO ₂ (HB) ₂	-21.428
PuO ₂ (HB) ₂	-28.351
AmO ₂ (HB) ₂	-13.904
UO ₂ (HC) ₂	-59.013
NpO ₂ (HC) ₂	-56.609
PuO ₂ (HC) ₂	-63.616
AmO ₂ (HC) ₂	-46.196

Differences in predicted characteristics in structures optimized with the SCAN and B3LYP functionals

The UO₂(HX)(NO₃)(CH₃OH) and UO₂(HX)₂ (with HX = HA, HB, and HC) structures optimized with the SCAN and B3LYP functionals show predicted U-O distances to be slightly longer with SCAN with differences of less than 0.0122 Å in the uranyl fragment (O1 and O2), and less than 0.0488 Å with equatorial oxygen atoms (O3 and O4). The U-N2 distance is predicted to be between 0.0363 and 0.0421 Å shorter in the structures optimized with SCAN than with B3LYP. The O3-U-O4 angle is predicted to be between 0.70 and 1.10° wider in structures optimized with SCAN than with those optimized with B3LYP. Differences in U-O1, U-O2, U-O3, U-O4, U-N2, U-O1, U-O11, U-O111 distances, and O3-U-O4 angles for structures optimized with SCAN and B3LYP are included in Table 7. The magnitudes of complex vibrational frequency modes in the SCAN/B3LYP comparison are reported in Table S.1 in the SI.

The difference between partial charges from the uranyl fragment and the backbone is predicted to be approximately 0.2 larger in structures optimized with the B3LYP functional than in those optimized with the SCAN functional, as shown in Table 8.

The associated Gibbs free energies of reaction to the structures optimized with the SCAN and B3LYP functional relative to $UO_2(HB)(NO_3)(CH_3OH)$ show a $|\Delta(\Delta G)_{rxn}|$ between 2 and 28 kcal mol⁻¹ between relative Gibbs free energies of reaction calculated with the SCAN and B3LYP functionals, as shown in Table 9. However, the relative Gibbs free energies of reaction predict $UO_2(HB)(NO_3)(CH_3OH)$ to be slightly more stable than $UO_2(HA)(NO_3)(CH_3OH)$ when calculated with the SCAN functional (3.46 kcal mol⁻¹ lower), but not with B3LYP (10.65 kcal mol⁻¹ higher). $UO_2(HC)(OH_2)_2$ is predicted to be more stable than $UO_2(HB)(NO_3)(CH_3OH)$ when calculated with both B3LYP and SCAN with a lower ΔG_{rxn} of 20.59 and 18.29 kcal mol⁻¹, respectively. $UO_2(HA)_2$, $UO_2(HB)_2$, and $UO_2(HC)_2$ is predicted to be more stable than $UO_2(HA)_2$ by 33.09 kcal mol⁻¹ when calculated with B3LYP and 5.32 kcal mol⁻¹ with SCAN; $UO_2(HB)_2$ by 13.52 kcal mol⁻¹ with B3LYP and 1.62 kcal mol⁻¹ with SCAN; and $UO_2(HC)_2$ by 50.90 kcal mol⁻¹ with B3LYP and 37.44 kcal mol⁻¹ with SCAN].

In conclusion, stability trends predicted with structures optimized with B3LYP and SCAN show variations in relative energies [with respect to $UO_2(HB)(NO_3)(CH_3OH)$] between -11 kcal mol⁻¹ and -51 kcal mol⁻¹ with B3LYP, and between 3 and 37 kcal mol⁻¹ with SCAN. This difference in predicted Gibbs free energies of reaction when altering the functional of choice is consistent with predictions in an actinide nitrate study which tested the dependence of predicted thermochemical properties on the level of theory of choice.³⁶

Table S.8: Difference in predicted U-X (with X = O1, O2, O3, O4, N2, OI, OII, and OIII) distances, and O3-U-O4 angle in $UO_2(HX)(NO_3)(CH_3OH)$ and $UO_2(HX)_2$ (with HX = HA, HB, and HC) optimized with the SCAN and B3LYP functionals (reported in Å and degrees (°), for interatomic distances and angles, respectively).

	U-01	U-02	U-03	U-04	U-N2	U-0I	U-OII	U-OIII	03-U-04
UO ₂ (HA)(NO ₃)(CH ₃ OH)	-0.0113	-0.0102	0.0288	0.0326	0.0396	0.0438	0.0399	0.0501	-0.9
UO ₂ (HB)(NO ₃)(CH ₃ OH)	-0.0114	-0.0103	0.0343	0.0488	0.0371	0.0441	0.0371	0.0483	-1.1
UO ₂ (HC)(NO ₃)(CH ₃ OH)	-0.0122	-0.0112	0.0315	0.0334	0.0391	0.0430	0.0384	0.0485	-0.9
UO ₂ (HA) ₂	-0.0107	-0.0107	0.0335	0.0335	0.0421	-	-	-	-0.7
UO ₂ (HB) ₂	-0.0103	-0.0103	0.0452	0.0448	0.0363	-	-	-	-1.0
$UO_2(HC)_2$	-0.0108	-0.0108	0.0351	0.0351	0.0403	-	-	-	-0.7

Table S.9: Difference in calculated partial charge between the uranyl fragment and backbone in $UO_2(HX)(NO_3)(CH_3OH)$ and $UO_2(HX)_2$ (with HX = HA, HB, and HC) structures optimized with the SCAN and B3LYP functionals.

Compound	B3LYP	SCAN
UO ₂ (HA)(NO ₃)(CH ₃ OH)	1.12	0.87
UO ₂ (HB)(NO ₃)(CH ₃ OH)	1.16	0.91
UO ₂ (HC)(NO ₃)(CH ₃ OH)	1.15	0.91
UO ₂ (HA) ₂	1.06	0.83
UO ₂ (HB) ₂	1.14	0.90
UO ₂ (HC) ₂	1.11	0.89

Table S.10: Calculated $\Delta(\Delta G)_{rxn}$ with the B3LYP and SCAN functionals (according to Eq. 1, and 2) for UO₂(HX)(NO₃)(CH₃OH), and UO₂(HX)₂ (with HX = HA, HB, and HC) with respect to UO₂(HB)(NO₃)(CH₃OH) (as shown in Eq. 3.a and 3.b), and shown in kcal mol⁻¹.

Compound	B3LYP	SCAN
UO ₂ (HA)(NO ₃)(CH ₃ OH)	-10.65	3.46
UO ₂ (HC)(NO ₃)(CH ₃ OH)	-20.59	-18.29
UO ₂ (HA) ₂	-33.09	-5.32
UO ₂ (HB) ₂	-13.52	-1.62
UO ₂ (HC) ₂	-50.90	-37.44

Stability trends predicted with structures optimized with B3LYP and SCAN show variations in relative energies [with respect to $UO_2(HB)(NO_3)(CH_3OH)$] between -11 kcal mol⁻¹ and -51 kcal mol⁻¹ with B3LYP, and between 3 and 37 kcal mol⁻¹ with SCAN.

References

- Bernstein, K. J.; Do-Thanh, C.-L.; Penchoff, D. A.; Alan Cramer, S.; Murdock, C. R.; Lu, Z.; Harrison, R. J.; Camden, J. P.; Jenkins, D. M. The Synthesis and Spectroscopic Characterization of an Aromatic Uranium Amidoxime Complex. *Inorganica Chim. Acta* **2014**, *421*, 374–379.
- (2) Tian, G.; Teat, S. J.; Zhang, Z.; Rao, L. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime. *Dalton Trans.* **2012**, *41* (38), 11579–11586.