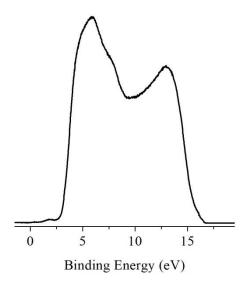
Supporting Information.

Sb-doped titanium oxide: a rationale for its photocatalytic activity for environmental remediation


Massimo Zimbone,^a Giuseppe Cacciato,^a Luca Spitaleri,^b Russell G. Egdell,*^c Maria Grazia Grimaldi,*^d Antonino Gulino,*^b

^a CNR-IMM, via S. Sofia 64, 95123 Catania, Italy.

^b Dipartimento di Scienze Chimiche, and INSTM, UdR of Catania, Viale Andrea Doria, 6 Catania, Italy.

^c Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.

^d CNR-IMM, and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy.

Figure S1. UPS He-I spectrum of 1.5% Sb-TiO₂ after annealing overnight at 1000°C. Structure due to satellite radiation has been subtracted from the spectrum. The position of the Fermi level was established from measurement on a silver foil. The band centred at ~ 5 eV is associated with the O 2p valence electrons. The band at ~ 12.5 eV is due to the secondary electron emission. The valence band edge was found just over 3 eV below the Fermi level thus demonstrating that the Fermi energy is pinned close to the conduction band minimum. The weak peak observed at ~ 1.8 eV is due to the Sb(III) $(5s-5p)^2$ hybrid surface states.