The New Hybrid Type Squaramide Fused Amino Alcohol Organocatalyst For Enantioselective Domino Michael Addition/Cyclization Reaction of Oxoindolines with Cyclic 1,3-Diketones

Madhu Chennapuram,[†] Isiaka Alade Owolabi,[†] Chigusa Seki,[†] Yuko Okuyama,[‡] Eunsang Kwon,[§] Koji Uwai,[†] Michio Tokiwa,^{||} Mitsuhiro Takeshita^{||} and Hiroto Nakano*[†]

[†]Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan, Email: catanaka@mmm.muroran-it.ac.jp, http://www3.muroranit.ac.jp/hnakano/

[‡]Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan

[§]Research and Analytical Centre for Giant Molecules, Graduate School of Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan, email: ekwon@mtohoku.ac.jp, www.kiki.chem.tohoku.ac.jp/kwon/index.html

^ITokiwakai Group, 62 Numajiri, Tsuduri-chou Uchigo, Iwaki 973-8053, Japan.

Supporting Information

Contents

1. HPLC Chromatograms	S2-S18
2. Copies of ¹ HNMR and ¹³ CNMR spectras	S20-S36
3. X-ray Crystallographic Analysis of 4e	S37-S40

2. HPLC Chromatographs of 4b-r

No	Rt(min)	Area	Area (%)	Height	NTP	Symmetry	Resolution
1	42.87	19780874	49.4146	82620	725.1	****	1.174
2	53.05	20249548	50.5854	49084	374	****	****
		40030422	100	131704			

No	Rt(min)	Area	Area (%)	Height	NTP	Symmetry	Resolution
1	42.78	20527526	53.651	85081	711	****	1.187
2	53.24	17733721	46.349	42043	360.4	****	****
		38261247	100	127124			

No	Rt(min)	Area	Area (%)	Height	NTP	Symmetry	Resolution
1	15.23	35526078	91.5883	626420	1728	0.992	9.965
2	35.11	3262823	8.4117	33846	3096.6	1.049	****
		38788901	100	660266			

28.67	6106120	9.8016	85872	3598.4	1.115
37.09	56191173	90.1984	599002	3421.6	1.682
	62297293	100	684874		

No	Rt(min)	Area	Area (%)	Height	NTP	Symmetry	Resolution
1	46.03	13174526	49.8377	107934	3182.8	1.124	5.17
2	66.45	13260350	50.1623	76470	3288	1.14	****
		26434877	100	184404			

No	Rt (min)	Area	Area (%)	Heights	NTP	Symmetry	Resolution
1	31.27	16826523	49.632	194512	2998.6	1.017	11.122
2	82.45	17076024	50.368	65862	2272.8	1.037	****
		33902547	100	260374			

31461067

2

50.1142 49.8858 100

 264006
 1585.4

 131985
 2603.3

 395991
 2603.3

 0.927
 11.219

 2.004

S16

No	Rt(min)	Area	Area(%)	Height	NTP	Symmetry	Resolution
1	25.46	7997271	49.0036	72784	1214.8	****	0.973
2	28.12	8322478	50.9964	87462	1974.9	****	****
		16319749	100	160246			

Gram-scale experiment:

To a solution of 2a (0.670 gr, 4.78mmol) in 100 mL round bottom-flask containing in dry THF (20 mL) was added catalyst 3a (0.144 gr, 5 mol %). The reaction mixture was allowed to stir at 0 °C for 1h, followed by added *N*-methyl-3-dicyano-oxoindoline 1e (1.0 gr, 4.78mmol) at 0 °C. The reaction mixture was allowed to stir at the same temperature for 48 h. After 48h the starting materials were completely consumed indicated by TLC and the reaction mixture suspension was simply filtered using Buchman filter paper to afford product 4e in pure form.

For racemic 4e HPLC chart (see page no: S5) in this supporting information file.

3. Copies of ¹HNMR and ¹³CNMR of **4b-r**

4. X-ray Crystallographic Analysis of 4e

X-ray diffraction data were collected at 93 K on a Rigaku R-AXIS RAPID diffractometer using multi-layer mirror monochromated Cu-K α radiation. The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement² on F² was based on 2997 observed reflections and 236 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0| = 0.0409$$

wR_2 = [\Sigma (w(F_0^2 - F_c^2)^2) / \Sigma w(F_0^2)^2]^{1/2} = 0.1092

The goodness of fit³ was 1.04. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.37 and -0.42 e-/Å³, respectively. The final Flack parameter⁴ was -0.03(5), indicating that the present absolute structure is correct.⁵ A total of 9893 reflections were measured and 2997 were unique ($R_{int} = 0.0361$). Crystal data and refinement statistics are shown in Table **S1**. Atomic coordinates and B_{iso}/B_{eq} are listed in Table **S2**. Atomic coordinates and B_{iso} involving hydrogen atoms are listed in Table **S3**.

Crystallographic data of **4e** has been deposited with Cambridge Crystallographic Data Center, deposition no. CCDC 1823802.

- 1. Sheldrick, G. M. A Short history of SHELX. Acta Cryst. 2008, A64, 112-122.
- 2. Least Squares function minimized: (SHELXL 2013)
- $\Sigma w (F_o^2 F_c^2)^2$ where w = Least Squares weights.
- 3. Goodness of fit is defined as:

 $[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{v})]^{1/2}$

where: No = number of observations

 N_v = number of variables

4. Parsons, S.; Flack, H. Precise absolute-structure determination in light-atom crystals. *Acta Cryst.* **2004**, *A60*, s61.

5. Flack, H.D.; Bernardinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. *J. Appl. Cryst.* **2000**, *33*, 1143-1148.

Table S1. Crystal data and structure refinement.

	A. Crystal Data
Empirical Formula	$C_{20}H_{19}N_3O_3$
Formula Weight	349.39
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.100 X 0.100 X 0.100 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 6.79795(18) Å
	b = 9.9618(3) Å
	c = 12.8161(4) Å
	b = 98.897(7) o
	V = 857.46(4) Å3

Diffractometer Radiation

Voltage, Current Temperature Detector Aperture No. of Reflections Measured

Corrections

P₂₁ (#4) 2 1.353 g/cm³ 368.00 7.573 cm⁻¹

B. Intensity Measurements

R-AXIS RAPID CuK α (l = 1.54187 Å) multi-layer mirror monochromated 40kV, 30mA -183.0oC 460.0 x 256.0 mm Total: 9893 Unique: 2997 ($R_{int} = 0.0361$) Parsons quotients (Flack x parameter): 1351 Lorentz-polarization Absorption (trans. factors: 0.721 - 0.927) Secondary Extinction (coefficient: 1.07500e-002)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXS)
Kennement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	w = $1/[\sigma_2(Fo^2) + (0.0773 \cdot P)2 + 0.3462 \cdot P]$
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
2qmax cutoff	135.00
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	2997
No. Variables	236
Reflection/Parameter Ratio	12.70
Residuals: R_1 (I>2.00s(I))	0.0409
Residuals: <i>R</i> (All reflections)	0.0410
Residuals: wR_2 (All reflections)	0.1092
Goodness of Fit Indicator	1.036
Flack parameter (Parsons' quotients = 1351)	-0.03(5)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.37 e-/Å3
Minimum peak in Final Diff. Map	-0.42 e-/Å3

Table S2. Atomic coordinates and B_{iso}/B_{eq}

atom	Х	У	Z	B_{eq}
03	0.5887(3)	0.1280(2)	0.33069(15)	1.36(3)
05	0.6485(3)	0.3916(2)	0.19882(16)	1.60(4)
027	0.1154(3)	0.43951(19)	0.39244(14)	1.14(3)
N1	-0.0838(4)	0.2802(3)	0.44067(19)	1.35(4)
N6	0.4631(3)	0.1157(2)	0.15315(18)	1.21(4)
N12	0.0859(4)	-0.0328(3)	0.3494(2)	1.98(5)
C2	0.3834(4)	0.4002(3)	0.2967(2)	0.96(4)
C7	0.3462(4)	0.6173(3)	0.3942(2)	1.16(4)
C8	0.1136(4)	0.0798(3)	0.3371(2)	1.34(5)
C9	0.3890(4)	0.7272(3)	0.2224(2)	1.39(5)
C10	0.3133(4)	0.1812(3)	0.0832(2)	1.21(4)
C11	0.2643(4)	0.1629(3)	-0.0252(2)	1.42(5)
C13	0.1086(4)	0.2414(3)	-0.0771(2)	1.65(5)
C14	0.0051(4)	0.3319(3)	-0.0231(2)	1.54(5)
C15	0.6559(4)	0.5774(3)	0.3182(2)	1.23(5)
C16	0.4954(4)	0.6818(3)	0.3311(2)	1.14(4)
C17	0.2990(4)	0.2655(3)	0.2548(2)	1.07(5)
C18	0.1530(4)	0.2190(3)	0.3262(2)	1.12(4)
C19	0.6228(5)	0.0374(3)	0.1190(3)	1.70(5)
C20	0.5901(4)	0.8033(3)	0.3922(2)	1.46(5)
C21	0.2109(4)	0.2705(3)	0.1383(2)	1.10(5)
C22	0.4698(4)	0.1624(3)	0.2539(2)	1.10(4)
C23	0.2869(4)	0.4782(3)	0.3574(2)	1.05(4)
C24	0.5688(4)	0.4509(3)	0.2645(2)	1.16(4)
C25	0.0560(4)	0.3468(3)	0.0867(2)	1.37(5)
C26	0.0606(4)	0.3070(3)	0.3835(2)	1.08(4)

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	x	У	Z	B _{iso}
H1A	-0.12861	0.19765	0.44383	1.620
H1B	-0.13378	0.34509	0.47508	1.620
H7A	0.40578	0.61390	0.46970	1.386
H7B	0.22556	0.67422	0.38811	1.386
H9A	0.48566	0.76826	0.18283	1.673
H9B	0.28576	0.79290	0.23164	1.673
H9C	0.32757	0.64935	0.18347	1.673
H11	0.33314	0.10023	-0.06218	1.698
H13	0.07255	0.23275	-0.15143	1.981
H14	-0.10022	0.38359	-0.06063	1.854
H15A	0.75176	0.61693	0.27608	1.480
H15B	0.72960	0.55416	0.38863	1.480
H19A	0.58654	0.01418	0.04423	2.045
H19B	0.64343	-0.04502	0.16108	2.045

H19C	0.74578	0.09033	0.12888	2.045
H20A	0.68536	0.84560	0.35238	1.753
H20B	0.65952	0.77407	0.46124	1.753
H20C	0.48614	0.86805	0.40229	1.753
H25	-0.01428	0.40768	0.12445	1.648