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Two-Stage Instrumental Variable Methodology 

In this work, we used the two-stage residual inclusion individual frailty (2SRI-F) algorithm.1 

We conducted two comparisons (PTA vs. atherectomy and stent vs. atherectomy) through two 

different IVs. The algorithm is as follows: 

 

1. Compute the IVs as the preference of using one treatment (T1 or T2) vs the 

reference (T0). For measuring treatment preference in one moment, we considered the 

surgeries done in the same facility in the year (12 months) prior to a patients’ procedure 

and computed the center-specific historical proportion of surgeries using one particular 

therapy (e.g. number of stent procedures / total number of stent and atherectomy 

procedures). We saved this proportion (denoted IV1 and IV2) and the number of 

surgeries performed in each hospital the last year, denoted VL. 

 

2. [First Stage]. We performed a standard linear regression model to estimate the 

parameters of the treatment assignment model. In this model, we included the IV for the 

given treatment comparison and all measured covariates including the total number of 

surgeries performed to account for the relevant surgical experience of the hospital. That 

is, 

  [1] 

where  is a binary random variable indicating which of the treatment j (j=1,2) and 

treatment 0, IVj is the instrumental variable relevant to these two treatments,  



 

are K measured covariates and  is the total number of relevant surgeries performed in 

the past 12-months. 

3. We saved the residuals from the previous model: . 

4. [Second Stage] We performed a proportional hazards Cox regression model with 

individual frailties including the covariates in [1] and the residuals, Rj. 

We performed the 2-SRI-F procedure twice, once for the PTA vs. atherectomy comparison using 

IV1, and again for the stent vs. atherectomy comparison using IV2.  

 

R code 

1. Computing the IV for comparing treatments T1 and T2 [N is the sample size] 

IVP1= sapply(1:N,function(i) {I=which(data$center==data$center[i] & as.numeric(data$start[i]-

data$start)<= 365.24 & as.numeric(data$start[i]-data$start)> 0)  sum(data$trt[I]==1)/sum(data$trt[I]==1 | 

data$trt[I]==2)}) 

data$nprev1= IVP[1,] 

data$iv1= IVP1 

 

2. First Stage. [We adjusted data.t1 to just include two considered therapies and tr2 is 

defined appropriately]. Notice that the sample size, n1, just considers the two treatments. 

 

S1= lm(trt2 ~ iv1 + race + age + … + htn +nprev1, data=data.t1) 

 

data.t1$PRE= as.numeric(predict(S1,data.t1)) 

data.t1$RES= data.t1$trt2 - data.t1$PRE 

 

3. Second Stage. [survival package is required] 



 

 

tsA<-  coxph( Surv(timeAny,eventAny)~ trt2 +  race + age + … + RES + nprev1 + 

frailty(1:n1,dis="gauss"), data=data.t1) 

 

  



 

Data S2. 

 

Instrumental Variable Assumption Assessment 

The generalizability and validity of our IV findings depends on the strength with which we 

can make three key assumptions about our instrument. These assumptions are that our 

instrument: 1) has a causal effect on the exposure 2) only affects the outcome through the 

exposure 3) does not share common causes with the outcome. If these assumptions are held, then 

the effect we observed can be causal.2 We found that our instruments were strongly associated 

with our exposure, treatment type, as evidenced by the large F-statistic values and increasing use 

of atherectomy for patients who receive treatment at centers with a high proportion of 

atherectomy procedures. The other IV assumptions cannot be verified from the data; hence, we 

relied on the expert knowledge of vascular surgery across our team to identify any potential 

assumption violations. Because our instrument is so strongly related to the exposure, any 

proposed alternative link between the instrument and outcome was ultimately related through the 

treatment type. We included total procedural volume as a covariate in our IV analyses to help 

justify the assumption that a hospital’s experience with a given procedure is unrelated to patient 

outcomes after conditioning on observed covariates. Conditioning on total volume stops the 

presence of a general surgical volume learning effect from violating the third assumption, 

making a procedure specific learning effect the only threat to the validity of the IV. There is no 

evidence in the literature of a procedure-specific learning effect for endovascular PAD treatment 

and long-term outcomes. Thus, after careful consideration of each assumption, we are confident 

in the validity of our instrument and IV results.  

 

 



 

Table S1. CPT codes used to identify outcomes in Medicare Claims  

 

Outcome CPT Codes 

Major Amputation 27590 

27591 

 

27592 

27880 

 

27881 

 

27882 

 

28805 

Any Amputation Major amputation codes 

+ 

28810 

 

28820 28825   

Major Adverse Limb Event 

(major amputation OR 

reintervention) 

Major amputation codes 

+  

35521 

35351 

35355 

35361 

35363 

35537 

35538 

35539 

35540 

35541 

35546 

35539 

35548 

35549 

35551 

35563 

35565 

35621 

35623 

35637 

35638 

35646 

35647 

35651 

35654 

35661 

35663 

35665 

35302 

35303 

35304 

35305 

35306 

35371 

35372 

35533 

35556 

35558 

35566 

35571 

35583 

35585 

35587 

35656 

35666 

35671 

35681 

35682 

35683 

35879 

35881 

35883 

35884 

35452 

35454 

35472 

35473 

35481 

35482 

35491 

35492 

35456 

35459 

35470 

35474 

35483 

35485 

35495 

37205 

37206 

37208 

36200 

36245 

36246 

36247 

36248 
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