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Figure S1. Characterization of NICS by (a) 
1
H NMR spectrum (D2O, 90 °C, 400 MHz), (b) 

FTIR spectra of NICS and CS (KBr disk), and (c) XRD patterns of NICS and CS. 

1
H NMR (Figure S1a): The itaconization degree of CS was calculated to be 36% by using 

reported method.
1
 The spectrum of CS was not measurable under this condition because of 

insolubility in water due to the strong intermolecular hydrogen bonding originates from high 

deacetylation degree. 

FTIR (Figure S1b): A characteristic new peak appeared in the FTIR spectrum of NICS at 

1382 cm
-1

 assignable to the carbonyl stretching of -CO2
-
 ions originating from itaconization 

of CS via neutralization with NaOH aq. In addition, the O-H, N-H, and -CONH- peaks were 

significantly changed from the CS spectrum.  

XRD (Figure S1c): The XRD spectrum of CS shows a very weak reflection at 11° and a 

strong reflection at 21°, which are assignable to the crystal forms I and II of CS, 

respectively.
2
 Therefore, CS has semicrystalline structure. However, the XRD pattern of 

NICS showed a medium intense diffraction band at 8.5°, and a strong reflection centred at 

20° and no any significant peak observable at 11°.   The absence of a signal at 11° and the 

change in peak position suggested that the crystal structure of CS was interrupted because of 

the insertion of hydrophilic N-itaconyl moieties. This outcome demonstrated that 

intermolecular hydrogen bonding was significantly lowered in NICS than that in CS resulting 

better dispersibility in water.   
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Figure S2. 
1
H NMR spectrum of NICS-EA (D2O, 25 °C, 400 MHz). 

 

 

 

Figure S3. EDX spectra of (a) bare Fe3O4, (b) Fe3O4-NICS-EGDE, and (c) charge-

conversional Fe3O4-NICS-EGDE-EA nanocomposite particles. 

 

Samples were placed on a carbon tape for EDX analysis. As a result, the intensities of C and 

O signals are not quantitative.  The peaks of C, O, Fe, and N are clearly visible in the spectra. 
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Figure S4. XRD analysis of (a) bare Fe3O4, (b) Fe3O4-NICS-EGDE, and (c) charge-

conversional Fe3O4-NICS-EGDE-EA nanocomposite particles. 

 

All of the XRD pattern shows six characteristice reflections assignable to the (220), (311), 

(400), (422), (511), and (440) lattice planes of spinel Fe3O4 (JCPDS no. 88-0315)
3
 and any 

significant peaks originating from other iron compounds were not observable.
4 
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Figure S5. Unit cell characterization of charge-conversional Fe3O4-NICS-EGDE-EA 

nanocomposite particles by (a) HRTEM micrograph, and (b) SAED patterns. 

 

The HRTEM micrograph (Figure S5a) of a single charge-conversional Fe3O4-NICS-EGDE-

EA nanocomposite particle indicating the vivid lattice fringes with interplanar spacing of 

0.25 nm assignable to the (311) plane.   A typical SAED pattern shows clear spots, assignable 

to the six Miller indices (hkl) calculated from d-spacing revealed the monocrystalline nature 

of the core Fe3O4 that agrees with the XRD data (Figure S5b). 
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Figure S6. TGA profiles of (a) bare Fe3O4, (b) Fe3O4-NICS-EGDE, and (c) charge-

conversional Fe3O4-NICS-EGDE-EA nanocomposite particles (10 °C min
-1

, N2). 

 

The amounts of polymer-coating materials present in Fe3O4-NICS-EGDE and charge-

conversional Fe3O4-NICS-EGDE-EA nanocomposite particles were estimated using TGA 

(Figure S6). Synthesized bare Fe3O4 is highly thermo-stable, and the total weight loss was 4% 

below 450 °C, because of the desorption of physically and chemically bound water. 

Significant weight loss was invisible in the range of 450 to 800 °C. The TGA profiles of both 

composites revealed a significant three-stage weight loss with respect to their initial weights.  

The first 7% weight loss below 200 °C, is assignable to the removal of adsorbed water. The 

second-stage weight loss of 34 and 35% in the range of 200 to 600 °C are corresponded to the 

degradation of the coating materials. The final 55% and 59% weight loss are attributed to the 

coating-materials-induced catalytic degradation of core Fe3O4 to γ- Fe2O3 and FeO.
5
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Figure S7. Time-dependent hemolysis of sheep RBCs by charge-conversional Fe3O4-NICS-

EGDE-EA nanocomposite particles (600 µg ml
-1

, 0.150 M NaCl(aq), 37 °C). 
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Figure S8. Photo images of the dispersity of Fe3O4-NICS-EGDE (a) dispersed in saline, (b) 

just after addition of RBCs, and (c) incubated at 37 °C for 5 h resulting into aggregation, and 

pH-dependent (d) hemolytic activities of unmodified Fe3O4-NICS-EGDE nanocomposite 

particles.  

The aggregates of the unmodified Fe3O4-NICS-EGDE nanocomposite particles were 

observed as black precipitates (Figure S8c). The unmodified Fe3O4-NICS-EGDE 

nanocomposite particles showed low hemolytic activities (below 0.5%) because of their 

aggregation in the RBC dispersion resulted in negligible interaction with dispersed RBCs. 
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Figure S9. Light microscopic images of hemolysis of the sheep RBCs by charge-

conversional Fe3O4-NICS-EGDE-EA nanocomposite particles: (a) negative control, (b) 

positive control (1% triton X100 aq.), incubated at pH 5.0 for (c) 0 h, (d) 1 h, (e) 3 h, and (f) 5 

h with 600 µg mL
-1

 nanocomposite.   

 

Just after treatment with the dispersion of charge-conversional Fe3O4-NICS-EGDE-EA 

nanocomposite particles (0 h), RBCs showed their normal biconcave disk shape almost 

similar to the control cells (Figure S9a,c). A gradual membrane disruption was proceeded 

(Figure S9d-f) with the progression of time (1, 3, and 5 h) at the highest concentration (600 µg 

mL
-1

) under study. These observations support the pH-dependent hemolysis data and 

suggested that the charge-conversional Fe3O4-NICS-EGDE-EA nanocomposite particles have 

very negligible hemolytic activity at physiological conditions, while they are hemolytic at 

lower pH. 
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Figure S10. Membranolysis of sheep RBCs by the charge-conversional Fe3O4-NICS-EGDE-

EA nanocomposite particles (a,b) optical images, and (c,d) light microscopic images after 

MW irradiation at pH 6.8 (zeta potential = ˗13 mV), and pH 6.5 (zeta potential = ˗7 mV), 

respectively.  
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