Supporting Information

For

Formation of 2-Imino benzo[*e*]-1,3-oxazin-4-ones from Reactions of Salicylic Acids and Anilines with HATU: Mechanistic and Synthetic Studies

Derek A. Leas,[†] Jianbo Wu,[†] Edward L. Ezell, [‡] Jered C. Garrison,[†] Jonathan L. Vennerstrom,[†] and Yuxiang Dong^{*,†}

[†]College of Pharmacy and [‡]Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, United States

ydong@unmc.edu

Table of Contents:

1.	Crystallographic data	S2
2. 3	² H and ³² C NMR spectra 2D NMR spectra for compounds 4c 4d 4f and 10	S4
<i>4</i> .	References	S36 S71

Crystallographic Data

Single crystals of $C_{21}H_{15}N_2O_2Br$ (**4f**) were grown via slow evaporation of EtOAc. A suitable crystal was selected and mounted on a CyroLoopTM using paratone oil on a Xcalibur, Onyx, Ultra diffractometer. The crystal was kept at 100 K during data collection. Using Olex2¹, the structure was solved with the ShelXS² structure solution program using Direct Methods and refined with the ShelXL³ refinement package using Least Squares minimization.

Olex2 view – 50% probability level

Figure S1. Structural features of (*Z*)-3-benzyl-2-((4-bromophenyl)imino)-2,3-dihydro-4H-benzo[e][1,3]oxazin-4-one (**4f**).

$C_{21}H_{15}N_2O_2Br$
407.26
100
monoclinic
$P2_1/c$
10.92936(8)
12.80330(9)
13.37608(11)

 Table S1. Crystal data and structure refinement

α/°	90					
β/°	112.0814(9)					
γ/°	90					
Volume/Å ³	1734.45(2)					
Ζ	4					
$\rho_{calc}g/cm^3$	1.560					
μ/mm^{-1}	3.379					
F(000)	824.0					
Crystal size/mm ³	0.3 imes 0.3 imes 0.05					
Radiation	$CuK\alpha \ (\lambda = 1.54184)$					
20 range for data collection/°8.732 to 152.33						
Index ranges	$\textbf{-13} \leq h \leq 13, \textbf{-16} \leq k \leq 16, \textbf{-16} \leq \textbf{l} \leq \textbf{16}$					
Reflections collected	59123					
Independent reflections	$3619 [R_{int} = 0.0578, R_{sigma} = 0.0164]$					
Data/restraints/parameters	3619/0/235					
Goodness-of-fit on F ²	1.045					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0307, wR_2 = 0.0806$					
Final R indexes [all data]	$R_1 = 0.0324, wR_2 = 0.0822$					
Largest diff. peak/hole / e Å ⁻³ 0.27/-0.56						

Figure S2. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4a.

Figure S3. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4a.

Figure S4. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4b.

Figure S6. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound 5.

Figure S8. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 6.

Figure S10. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound 7.

Figure S11. ¹³C NMR (125 MHz, DMSO- d_6) spectrum of compound 7.

Figure S12. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 4c.

Figure S14. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 4d.

Figure S15. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 4d.

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3b**.

Figure S17. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4e.

Figure S18. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4e.

Figure S19. ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3c**.

Figure S20. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 4f.

Figure S21. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 4f.

Figure S22. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4h.

Figure S23. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4h.

Figure S24. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4i.

Figure S25. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4i.

Figure S26. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4l.

Figure S27. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4I.

Figure S28. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4m.

Figure S29. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4m.

Figure S30. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4n.

Figure S31. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4n.

Figure S32. 1H NMR (600 MHz, DMSO-*d*₆) spectrum of compound 40.

Figure S33. 13C NMR (150 MHz, DMSO-*d*₆) spectrum of compound 40.

Figure S34. 2D NMR spectra atom numbering for 4c.

Figure S35. ¹H NMR spectra expansion of **4c**.

Figure S37. ¹³C-HSQC expansion spectra 1 of 4c.

Figure S38. ¹³C NMR spectra expansion of compound 4c.

Figure S39. TOCSY expansion spectra 2 of compound 4c.

Figure S40. ¹³C-HSQC expansion spectra 2 of 4c.

Figure S41. TOCSY expansion spectra 3 of compound 4c.

Figure S42. ¹⁵N-HMBC expansion spectra of 4c.

Figure S43. ¹³C-HSQC spectra of compound 4c.

Figure S44. ¹³C-HMBC spectra of compound 4c.

Figure S45. 2D NMR spectra atom numbering for 4d.

4d

Figure S46. ¹H NMR expansion spectra of compound 4d.

Figure S47. TOCSY expansion spectra 1 of compound 4d.

.....

	10 M		H 8		M.	in M	
	DL3 CDC	2/3 TOCSY 8/8/17					F1 [ppm]
-9					Ċ.	۲	72
		20 TO (51/ -b		9	8/9	8/7	1
		now familiar correlations of protons of the fused ring system, (COSY) confirms relative chemical shifts maintained.				00	7.8 7.6
10			10/8		10/9	10/7	- 8.8
		8.0 7.8	7.6	7.4	7.2	F2 (ppm	ך יי

Figure S48. ¹³C-HSQC expansion spectra 1 of compound 4d.

Figure S49. ¹³C-HSQC with ¹³C-HMBC overlay spectra of compound 4d.

Figure S50. TOCSY expansion spectra 2 of compound 4d.

Figure S51. ¹⁵N-HMBC spectra of compound 4d.

Figure S52. ¹³C-HSQC expansion spectra 2 of compound 4d.

Figure S53. TOCSY expansion spectra 3 of compound 4d.

Figure S54. ¹³C-HSQC expansion spectra 3 of compound 4d.

Figure S55. ¹³C-HMBC expansion spectra 1 of compound 4d.

Figure S56. ¹³C-HMBC expansion spectra 2 of compound 4d.

Figure S57. ¹³C-HMBC expansion spectra 3 of compound 4d.

Figure S58. 2D NMR spectra atom numbering for 4f.

Figure S59. ¹H NMR expansion spectra 1 of compound **4f**.

Figure S60. ¹H NMR expansion spectra 2 of compound 4f.

Figure S61. ¹³C NMR expansion spectra 1 of compound 4f.

Figure S62. ¹³C NMR expansion spectra 2 of compound 4f.

Figure S63. ¹³C-HMBC expansion spectra 1 of compound 4f.

Figure S64. COSY expansion spectra 1 of compound 4f.

Figure S65. COSY expansion spectra 2 of compound 4f.

Figure S66. ¹³C-HSQC expansion spectra 1 of compound 4f.

Figure S67. ¹³C-HMBC expansion spectra 2 of compound 4f.

Figure S68. ¹³C-HMBC expansion spectra 3 of compound 4f.

Figure S69. ¹³C-HMBC expansion spectra 4 of compound 4f.

Figure S70. COSY expansion spectra 3 of compound 4f.

Figure S71. TOCSY expansion spectra of compound 4f.

Figure S72. ¹³C-HSQC expansion spectra 2 of compound 4f.

Figure S73. ¹³C-HSQC expansion spectra 3 of compound 4f.

Figure S74. ¹³C-HSQC expansion spectra 4 of compound 4f.

Figure S75. ¹³C-HMBC expansion spectra 5 of compound 4f.

Figure S76. ¹³C-HMBC expansion spectra 6 of compound 4f.

Figure S77. COSY expansion spectra 4 of compound 4f.

Figure S78. ¹⁵N-HMBC expansion spectra 1 of compound 4f.

Figure S80. ¹³C-HSQC expansion spectra 5 of compound 4f.

Figure S81. ¹³C-HMBC expansion spectra 7 of compound 4f.

Figure S82. ¹³C-HMBC expansion spectra 8 of compound 4f.

Figure S83. 2D NMR spectra atom numbering for 10.

Figure S84. ¹H NMR spectra of compound 10.

Figure S85. ¹H NMR expansion spectra 1 of compound 10.

Figure S86. ¹H NMR expansion spectra 2 of compound 10.

Figure S87. COSY spectra of compound 10.

Figure S88. COSY expanded spectra 1 for compound 10.

Figure S90. ¹³C-HMBC NMR expanded spectra 2 for compound 10.

Figure S91. ¹³C-HMBC NMR expanded spectra 3 for compound 10.

Figure S92. ¹³C-HMBC NMR expanded spectra 4 for compound 10.

Figure S93. ¹³C-HMBC NMR expanded spectra 5 for compound 10.

Figure S94. ¹³C-HMBC NMR expanded spectra 6 for compound 10.

Figure S95. ¹³C-HMBC NMR expanded spectra 7 for compound 10.

Figure S96. ¹³C-HMBC NMR expanded spectra 8 for compound 10.

Figure S97. COSY expanded spectra 2 for compound 10.

Figure S98. Inverse gated quantitatvie ¹³C NMR spectra for compound 10.

Figure S99. HSQC spectra of compound 10.

Figure S100. 10 Hz long range ¹⁵N-HMBC spectra of compound 10.

Figure S101. 3 Hz long range ¹⁵N-HMBC spectra of compound 10.

Figure S102. ¹⁹F NMR spectra of compound 10.

References

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.
- 2. Sheldrick, G.M. Acta Cryst. 2008, A64, 112–122.
- 3. Sheldrick, G.M. *Acta Cryst.* **2015**, *C71*, 3–8.