Supporting Information

Self-assembly of graphene-encapsulated Cu composites for nonenzymatic glucose sensing

Bin Shen^{a, b}, Wenbin Hu^c

^a State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao

Tong University, Shanghai 200240, China

^bCollaborative Innovation Center for Advanced Ship and deep-Sea Exploration, Shanghai, 200240, China

CONTENTS

1.	The characterization of GO sheets	S2
2.	The size distribution of GO sheets.	S3
3.	The mechanism for the oxidation of glucose on Cu@RGO electrode	S ²
4.	CV curves of Cu@RGO electrode in NaOH electrolyte	S

^c Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

^{*} Corresponding author. Tel.: +86 02134203812; Fax: +86 021 34202749 E-mail: anodic@sjtu.edu.cn

1. The characterization of GO sheets

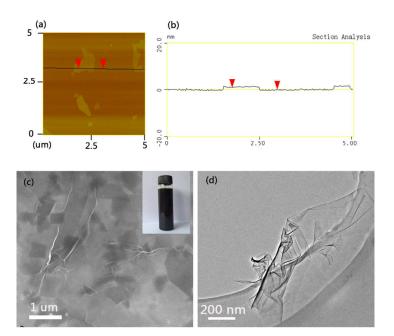


Figure S1. AFM image (a) and height profile (b) of GO sheets; (c) SEM image of GO sheets, the inset showed the digital photo of GO solution; (d) TEM image of GO sheets.

2. The size distribution of GO sheets

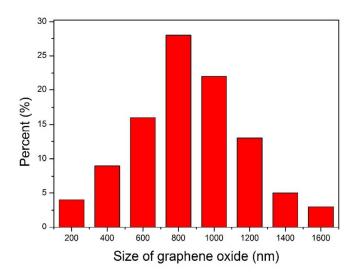


Figure S2. The size distribution of GO sheets which was obtained by ultrasonication for an hour.

3. The mechanism for the oxidation of glucose on Cu@RGO electrode

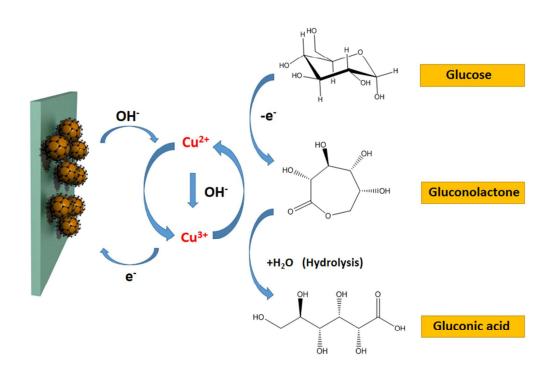


Figure S3. The mechanism for the oxidation of glucose on Cu@RGO electrode.

4. CV curves of Cu@RGO electrode in NaOH electrolyte

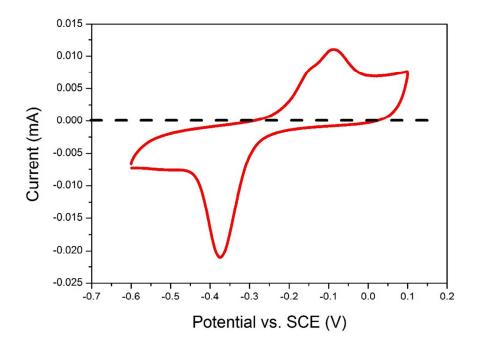


Figure S4. CV curves recorded at graphene-encapsulated Cu nanoparticle in N_2 -saturated 50 mM NaOH electrolyte at 50 mV/s.