Pyrimidine Nucleosides with Reactive (β-Chlorovinyl)sulfone or (β-Keto)sulfone Group at C5 Position, Their Reactions with Nucleophiles and Electrophiles, and Polymerase-catalyzed Incorporation into DNA

Sazzad H. Suzol,¹ A. Hasan Howlader,¹ Zhiwei Wen,¹ Yaou Ren,¹ Eduardo E. Laverde,¹ Carol Garcia,¹ Yuan Liu,^{1,2} and Stanislaw F. Wnuk^{1,*}

¹Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.

²Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, USA.

wnuk@fiu.edu

SUPPORTING INFORMATION

¹H, ¹³C, and ³¹P NMR spectra for all new compounds: Figures S1-S59; Pages S2-S60.

$$-7.85$$

 -7.65
 -7.131
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 -7.10
 $-7.$

Figure S1. ¹H NMR, (400 MHz), CDCl₃

Figure S7. ³¹P NMR, (162 MHz), D₂O

-3.77

Figure S14. ³¹P NMR, (162 MHz), D₂O

Figure S19. ¹H NMR, (400 MHz), DMSO-*d*₆

-2.40

Figure S53. ³¹P NMR, (162 MHz), D₂O

