Supporting Information

Stability of a Series of BODIPYs in Acidic Conditions: An Experimental and Computational Study into the Role of the Substituents at Boron

Maodie Wang^a, M. Graça H. Vicente^a, Deanna Mason^b, and Petia Bobadova-Parvanova^{b*}

^aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

^bDepartment of Chemistry, Rockhurst University, Kansas City, MO 64110, USA

Contents

¹¹ B NMR Spectra	S2
Calculated Chemical Shifts	S7
¹ H NMR Spectra	S9
TLC Studies	S25
Fluorescence Spectra	S26
UV-Vis Spectra	S29
Frontier Orbitals	S32
Mass Spectrometry Studies	S33
Infrared Spectra	S37
Optimized Cartesian Coordinates of BODIPYs and Hydrogen-bonded Complex	. S4040

¹¹B NMR spectra

Figure S1. ¹¹B NMR spectra of BODIPY **1** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S2. ¹¹B NMR spectra of BODIPY **2** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S3. ¹¹B NMR spectra of BODIPY **3** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S4. ¹¹B NMR spectra of BODIPY **4** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S5. ¹¹B NMR spectra of BODIPY **5** with 10 equivalents of trifluoracetic acid in CDCl₃.

Calculated Chemical Shifts

.

Table S1. B3LYP/6-31+G(d,p) calculated ¹¹B chemical shift (δ) in CDCl₃ for trivalent and tetravalent possible intermediates and products upon addition of TFA to BODIPYs **1**-**5**. BF₃OEt₂ is used as a reference.

Possible products and intermediates	¹¹ Β δ(ppm)	Possible products and intermediates	¹¹ Β δ(ppm)
BX ₃ (triv	alent)	BX ₄ (tetra	valent)
	Simple B-contai	ning compounds	
BF ₂ (O ₂ CCF ₃)	10.47	$[BF_2(O_2CCF_3)_2]^-$	1.04
BF(O ₂ CCF ₃) ₂	12.38	[BF(O ₂ CCF ₃) ₃] [−]	1.23
BCN ₂ (O ₂ CCF ₃)	14.39	$[BCN_2(O_2CCF_3)_2]^-$	-12.12
BMe ₂ (O ₂ CCF ₃)	56.29	[BMe ₂ (O ₂ CCF ₃) ₂] ⁻	9.81
BPh ₂ (O ₂ CCF ₃) ₂	45.98	$[BPh_2(O_2CCF_3)_2]^-$	8.28
B(OMe) ₂ (OCOCF ₃)	14.82	[B(OMe) ₂ (O ₂ CCF ₃) ₂] ⁻	2.75
B(O ₂ CCF ₃) ₃	11.34	[B(O ₂ CCF ₃) ₄] ⁻	-0.75
	BOD	DIPYs	
[BODIPY-O ₂ CCF ₃] ⁺	20.29	BODIPY-(O ₂ CCF ₃) ₂	-0.77
[BODIPY-F] ⁺	18.12	BODIPY-F-O ₂ CCF ₃	0.34
[BODIPY-CN] ⁺	13.10	BODIPY-CN-O ₂ CCF ₃	-8.04
[BODIPY-Me] ⁺	31.88	BODIPY-Me-O ₂ CCF ₃	2.23
[BODIPY-Ph] ⁺	28.51	BODIPY-Ph-O ₂ CCF ₃	-0.29
[BODIPY-OMe] ⁺	17.86	BODIPY-OMe-O ₂ CCF ₃	0.72

Table S2. B3LYP/6-31+G(d,p) calculated ¹¹B and ¹H chemical shift (δ) in CDCl₃ for hydrogenbonded complexes between TFA and BODIPYs **1-5**. BF₃OEt₂ is used as a reference for ¹¹B and TMS if used as a reference for ¹H.

Hydrogen bonded complex	¹¹ Β δ(ppm)	¹Η δ(ppm)
BODIPY 1THF	1.67	11.31
BODIPY 2THF	-17.95	12.13
BODIPY 2 (THF) ₂	-17.14	11.92/11.85
BODIPY 4THF	-2.85	6.69
BODIPY 5THF	0.64	16.69

¹H NMR Spectra

Figure S6. ¹H NMR spectra of BODIPY **1** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S7. ¹H NMR spectra of BODIPY **1** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S9. ¹H NMR spectra of BODIPY **2** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S10. ¹H NMR spectra of BODIPY **2** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S11. ¹H NMR spectra of BODIPY **2** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S12. ¹H NMR spectra of BODIPY **3** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S13. ¹H NMR spectra of BODIPY **3** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S14. ¹H NMR spectra of BODIPY **3** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S15. ¹H NMR spectra of BODIPY **4** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S16. ¹H NMR spectra of BODIPY **4** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S17. ¹H NMR spectra of BODIPY **4** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S18. ¹H NMR spectra of BODIPY **5** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S19. ¹H NMR spectra of BODIPY **5** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S20. ¹H NMR spectra of BODIPY **5** with 10 equivalents of trifluoracetic acid in CDCl₃.

Figure S21. ¹H NMR spectra of 0.3 M, 0.7 M, 1.7 M, and 3.3 M trifluoracetic acid in CDCl₃.

TLC Studies

Developing solvent: DCM:hexane=1:1

Figure S22. TLC analysis of BODIPY **1-5** and three days after the addition of TFA BODIPY 1'-5'

Fluorescence Spectra

Figure S23. Fluorescence spectra of BODIPY **1** (black) in THF; BODIPY **1** upon addition (red) with addition of 10 equivalents of TFA and after three days (blue) in THF.

Figure S24. Fluorescence spectra of BODIPY **2** (black) in THF; BODIPY **2** upon addition (red) with addition of 10 equivalents of TFA and after three days (blue) in THF.

Figure S25. Fluorescence spectra of BODIPY **3** (black) in THF; BODIPY **3** upon addition (red) with addition of 10 equivalents of TFA and after three days (blue) in THF.

Figure S26. Fluorescence spectra of BODIPY **4** (black) in THF; BODIPY **4** upon addition (red) with addition of 10 equivalents of TFA and after three days (blue) in THF.

Figure S27. Fluorescence spectra of BODIPY **5** (black) in THF; BODIPY **5** upon addition (red) with addition of 10 equivalents of TFA and after three days (blue) in THF.

UV-Vis Spectra

Figure S28. Normalized UV-vis spectra of BODIPY **1** (blue) in THF; BODIPY **1** with addition of 10 equivalents of TFA after three days (black) in THF; neutralized sample with excess amount of triethylamine (red).

Figure S29. Normalized UV-vis spectra of BODIPY **2** (blue) in THF; BODIPY **2** with addition of 10 equivalents of TFA after three days (black) in THF; neutralized sample with excess amount of triethylamine (red).

Figure S30. Normalized UV-vis spectra of BODIPY **3** (blue) in THF; BODIPY **3** with addition of 10 equivalents of TFA after three days (black) in THF; neutralized sample with excess amount of triethylamine (red).

Figure S31. Normalized UV-vis spectra of BODIPY **4** (blue) in THF; BODIPY **4** with addition of 10 equivalents of TFA after three days (black) in THF; neutralized sample with excess amount of triethylamine (red).

Figure S32. Normalized UV-vis spectra of BODIPY **5** (blue) in THF; BODIPY **5** with addition of 10 equivalents of TFA after three days (black) in THF; neutralized sample with excess amount of triethylamine (red).

Frontier Orbitals

-0.0976	-0.1113	-0.0849	-0.0899	-0.0922
-0.2072	-0.2227	-0.1981	-0.2020	-0.2022
1	2	3	4	5

Figure S33. Frontier orbitals of BODIPYs **1-5**. Energies in a.u.

Mass Spectrometry Studies

	m/z ′	lon	Formula	Abundance					
	346.1554	(M+Na)+	C19 H19 B F2 N2 Na	311.1					
Г	Best	Formula (M)	Ion Formula	Calc m/z	Score	Mass	Calc Mass	Abs Diff (ppm	Mass Match
	R	C19 H19 B F2 N2	C19 H19 B F2 N2 Na	346.1538	78.92	323.1647	323.1646	0.28	99.95
-	Isotope 1/	Abund%	Calc Abund%	Calc Abund Sum%	m/z	Calc m/z	Diff (ppm)	Abund Sum%	
	1	11.55	23.58	16.32	346.1554	346.1538	-4.63	8.8	
	2	100	100	69.2	347.1506	347.1505	-0.24	76.17	
	2	10 72	20.02	14 40	240 164	240 1626	1 50	15.03	

Figure S34. Mass spectra of BODIPY **1** with 10 equivalents of TFA (after three days)

Figure S35. Mass spectra of BODIPY **2** with 10 equivalents of TFA (after three days)

Figure S36. Mass spectra of BODIPY **3** with 10 equivalents of TFA (after three days)

Figure S37. Mass spectra of BODIPY **4** with 10 equivalents of TFA (after three days)

Figure S38. Mass spectra of BODIPY **5** with 10 equivalents of TFA (after three days)

Infrared Spectra

Figure S39 The infrared spectra of 20 mM TFA in dichloromethane.

Figure S40. Infrared spectra of 10 mM BODIPY **1** before (blue) and after (red) addition of 2 equivalents of TFA in dichloromethane.

Figure S41. Infrared spectra of 10 mM BODIPY **2** before (blue) and after (red) addition of 2 equivalents of TFA in dichloromethane.

Figure S42. Infrared spectra of 10 mM BODIPY **3** before (blue) and after (red) addition of 2 equivalents of TFA in dichloromethane.

Figure S43. Infrared spectra of 10 mM BODIPY **4** before (blue) and after (red) addition of 2 equivalents of TFA in dichloromethane.

Figure S44. Infrared spectra of 10 mM BODIPY **5** before (blue) and after (red) addition of 2 equivalents of TFA in dichloromethane.

Optimized Cartesian Coordinates of ground and excited states of BODIPYs and Hydrogen-bonded Complex

Table S3 B3LYP/6-31+G(d,p) optimized Cartesian coordinates of BODIPY **1**.

С	-0.37142000	-2.58259800	0.00001300
С	0.77351200	-3.37599000	0.00002400
С	0.08925200	-1.22366900	0.00001500
С	1.90431700	-2.53555200	0.00003000
Ν	1.49361900	-1.24717800	0.00001400
С	0.08925100	1.22366900	-0.00001700
С	-0.37142300	2.58259700	-0.00001200
С	0.77350800	3.37599000	-0.00002400
С	1.90431400	2.53555400	-0.00003200
Ν	1.49361800	1.24717900	-0.00001200
В	2.40901900	0.00000100	0.00000200
F	3.23354300	0.00001300	1.14788900
F	3.23354500	-0.00001000	-1.14788500
С	-0.60231700	-0.00000100	-0.00000200
С	-2.09840400	-0.00000100	-0.00000100
С	-2.80681600	0.00009300	1.21000600
С	-2.80681800	-0.00009400	-1.21000800
С	-4.20419300	0.00009700	1.20925000
Н	-2.26343000	0.00016700	2.15062200
С	-4.20419500	-0.00009900	-1.20925100
Н	-2.26343200	-0.00016900	-2.15062500
С	-4.90612900	-0.00000100	0.0000000
Н	-4.74229400	0.00017300	2.15265000
Н	-4.74229600	-0.00017400	-2.15265000
Н	-5.99210200	-0.00000100	0.00000100
С	3.34098100	2.94500700	-0.00004200
Н	3.86158400	2.55509700	0.88043300
Н	3.86157400	2.55508300	-0.88051800
Н	3.41682900	4.03424900	-0.00005100
С	3.34098400	-2.94500300	0.00003800
Н	3.86158600	-2.55509200	-0.88043800
Н	3.86157800	-2.55508100	0.88051300
Н	3.41683400	-4.03424600	0.00004500
С	-1.77245900	3.12004500	0.00001300
Н	-2.33755300	2.79403200	-0.87837100
Н	-2.33752800	2.79401600	0.87840800

Н	-1.74468200	4.21299800	0.00002200
Н	0.80329800	4.45770500	-0.00002500
Н	0.80330300	-4.45770400	0.00002500
С	-1.77245500	-3.12004900	-0.00000800
Н	-2.33754800	-2.79403500	0.87837600
Н	-2.33752600	-2.79402100	-0.87840300
Н	-1.74467700	-4.21300200	-0.00001600

Table S4. B3LYP/6-31+G(d,p) optimized Cartesian coordinates of BODIPY **2**.

С	-0.58528700	2.57747600	0.00000500
С	0.55398700	3.37809800	0.00000900
С	-0.11922800	1.22276600	0.00000600
С	1.69093000	2.55126200	0.00001100
N	1.28933600	1.25443700	0.00000600
С	-0.11914100	-1.22282400	-0.00000600
С	-0.58507300	-2.57758500	-0.00000500
С	0.55428000	-3.37809500	-0.00001200
С	1.69114000	-2.55114700	-0.00001300
N	1.28942600	-1.25436500	-0.00000500
В	2.18922900	0.00007000	0.00000200
С	-0.80878400	-0.00005000	0.0000000
С	-2.30467100	-0.00007100	0.0000000
С	-3.01173600	-0.00002000	-1.21062900
С	-3.01173600	-0.00008600	1.21062800
С	-4.40900600	-0.00001200	-1.20942800
Н	-2.46852700	0.00001200	-2.15129500
С	-4.40900600	-0.00008100	1.20942800
Н	-2.46852700	-0.00010600	2.15129500
С	-5.11055800	-0.00004900	0.0000000
Н	-4.94713700	0.00002200	-2.15269900
Н	-4.94713700	-0.00009900	2.15269900
Н	-6.19645500	-0.00004200	0.0000000
С	3.11804900	-2.98967800	-0.00001900
Н	3.65296100	-2.62215700	-0.88207000
Н	3.65296500	-2.62216500	0.88203300
Н	3.16422300	-4.08029000	-0.00002400
С	3.11779100	2.98995200	0.00001300
Н	3.65274200	2.62249400	0.88206300
Н	3.65274400	2.62249600	-0.88203800
Н	3.16384600	4.08056900	0.00001400
С	-1.98788500	-3.10923300	0.00000400
Н	-2.55072200	-2.78082100	0.87859200
Н	-2.55072800	-2.78083300	-0.87858500
Н	-1.96290500	-4.20200100	0.00001100
Н	0.57761900	-4.45966300	-0.00001400
Н	0.57721900	4.45966800	0.00000900
С	-1.98815900	3.10896000	-0.0000300
Н	-2.55095800	2.78047800	-0.87859100
Н	-2.55096200	2.78049200	0.87858700
Н	-1.96330900	4.20173200	-0.00001100
С	3.12509800	0.00009900	1.31435000
С	3,12510100	0.00011000	-1.31434400

Ν	3.77920700	0.00003300	2.27691500
N	3.77921200	0.00005200	-2.27690800

Table S5. B3LYP/6-31+G(d,p) optimized Cartesian coordinates of BODIPY **3**.

С	0.40420400	-2.57414000	-0.03736100
С	-0.71572000	-3.39019100	-0.00317800
С	-0.09906300	-1.22742600	-0.02391700
С	-1.87036600	-2.57425300	0.03306300
Ν	-1.50621200	-1.27463800	0.00635600
С	-0.09906500	1.22749400	0.02383000
С	0.40420800	2.57420400	0.03730300
С	-0.71571600	3.39025700	0.00301000
С	-1.87036300	2.57433200	-0.03320400
Ν	-1.50621500	1.27470700	-0.00644900
В	-2.47327800	0.00002300	0.00001400
С	0.58078000	0.00002700	-0.00004700
С	2.07822400	-0.00000400	0.00000500
С	2.78780500	0.02473600	-1.20886800
С	2.78771000	-0.02482400	1.20893200
С	4.18520500	0.02460300	-1.20872800
Н	2.24447200	0.04431900	-2.14939500
С	4.18511100	-0.02480200	1.20889900
Н	2.24430200	-0.04437900	2.14941600
С	4.88753500	-0.00012300	0.00011200
Н	4.72326700	0.04393300	-2.15207300
Н	4.72309900	-0.04418300	2.15228500
Н	5.97358200	-0.00016700	0.00015400
С	-3.26672600	3.10474800	-0.14677300
Н	-3.58110300	3.14901700	-1.19653400
Н	-3.99948400	2.50292600	0.38908400
Н	-3.29819400	4.12437400	0.24680900
С	-3.26672400	-3.10468800	0.14666700
Н	-3.58019600	-3.15098800	1.19662200
Н	-3.99983900	-2.50173100	-0.38738100
Н	-3.29867100	-4.12355900	-0.24884600
С	1.81568700	3.08663400	0.08199500
Н	2.35107600	2.74883800	0.97434400
Н	2.40406000	2.76168600	-0.78118800
Н	1.80263200	4.18035900	0.08937300
Н	-0.72273800	4.47291500	0.00043300
Н	-0.72274400	-4.47284900	-0.00064400
С	1.81569200	-3.08655000	-0.08198000
Н	2.35109700	-2.74878400	-0.97433200
Н	2.40403500	-2.76154300	0.78120200
Н	1.80265900	-4.18027500	-0.08930600
С	-3.33612300	-0.01413600	1.38832300
Н	-3.94918200	0.88333700	1.52617700

Н	-4.02826800	-0.86253700	1.43818000
Н	-2.67606900	-0.08426700	2.26462000
С	-3.33632500	0.01414100	-1.38818300
Н	-4.02940200	0.86181300	-1.43741900
Н	-2.67644000	0.08552500	-2.26450900
Н	-3.94840300	-0.88391800	-1.52658000

C C C C

N C C C N B

C C C C H

С Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н Н Н С Н

1.53896100	0.66053900	2.48767500
0.41374600	0.89128700	3.26586200
1.04502800	0.30569000	1.18606100
-0.73577800	0.68297500	2.47287600
-0.36269200	0.32722900	1.22348000
1.04505800	-0.30439500	-1.18634400
1.53902300	-0.65872200	-2.48808600
0.41384300	-0.89032200	-3.26607400
-0.73569200	-0.68306600	-2.47282600
-0.36264700	-0.32711800	-1.22347800
-1.33109900	-0.00060200	0.00015000
1.72933600	0.00092000	-0.00020300
3.22644600	0.00151000	-0.00034100
3.93598300	-1.15883700	0.33937300
3.93500500	1.16241000	-0.34019300
5.33326500	-1.15838200	0.33822700
3.39263500	-2.06149800	0.60396400
5.33228700	1.16305700	-0.33930800
3.39089400	2.06464400	-0.60467700
6.03505500	0.00261400	-0.00060900
5.87164700	-2.06396800	0.60237700
5.86990700	2.06906700	-0.60355900
7.12106600	0.00304000	-0.00071200
-2.14401500	-0.82921000	-2.94879300
-2.76220900	-1.37538300	-2.23244200
-2.61128500	0.14840200	-3.10748900
-2.15018200	-1.36664600	-3.90032400
-2.14411700	0.82790300	2.94916100
-2.76288000	1.37377900	2.23307200
-2.61057500	-0.15012000	3.10768800
-2.15051100	1.36508300	3.90083400
2.94876100	-0.78208100	-2.99107700
3.49308800	0.16511500	-2.92962300
3.52890000	-1.51783900	-2.42641500
2.93232000	-1.09514300	-4.03884100
0.40141200	-1.18629800	-4.30722700
0.40127600	1.18736400	4.30698600
2.94869500	0.78519300	2.99035600
3.49403000	-0.16138300	2.92839300

Table S6. B3LYP/6-31+G(d,p) optimized Cartesian coordinates of BODIPY **4**.

Н	3.52788900	1.52180200	2.42582400
Н	2.93218900	1.09785200	4.03823900
С	-2.16787500	-1.36663600	0.36983900
С	-3.48610300	-1.39807400	0.86387100
С	-1.52161300	-2.61653900	0.25701600
С	-4.12733500	-2.59432100	1.21107400
Н	-4.03593100	-0.47116000	0.99087300
С	-2.14486800	-3.81865100	0.60318500
Н	-0.50134000	-2.65459000	-0.11777300
С	-3.45952800	-3.81398600	1.08113800
Н	-5.14846900	-2.56931400	1.58390200
Н	-1.60646800	-4.75754400	0.49839600
Н	-3.95301200	-4.74458400	1.34835500
С	-2.16986100	1.36427900	-0.36929400
С	-3.48842000	1.39394400	-0.86254200
С	-1.52511800	2.61501900	-0.25704800
С	-4.13139600	2.58932100	-1.20951000
Н	-4.03709900	0.46629400	-0.98914000
С	-2.15012100	3.81628300	-0.60300500
Н	-0.50466700	2.65441200	0.11711900
С	-3.46507300	3.80985800	-1.08014500
Н	-5.15271700	2.56296100	-1.58173100
Н	-1.61286300	4.75588200	-0.49869000
Н	-3.95991200	4.73978500	-1.34719200

Table S7. B3LYP/6-31+G(d,p) optimized Cartesian coordinates of BODIPY 5.

C C C

C N

C C

C C Ν В С С С С С Н С Η С Н Н Н С Н Н Н С Н Н Н С Н Н Н Н Н С Н Н Н С Н

0.00000000	2.58217300	0.61416600
0.00000000	3.38120300	-0.52448200
0.00000000	1.22545600	0.14046000
0.00000000	2.54445900	-1.66203400
0.00000000	1.25423900	-1.26347500
0.00000000	-1.22545600	0.14046000
0.00000000	-2.58217300	0.61416600
0.00000000	-3.38120300	-0.52448200
0.00000000	-2.54445900	-1.66203400
0.00000000	-1.25423900	-1.26347500
0.00000000	0.0000000	-2.23869400
0.00000000	0.0000000	0.82898700
0.00000000	0.0000000	2.32570500
-1.20935100	0.0000000	3.03526800
1.20935100	0.0000000	3.03526800
-1.20905000	0.0000000	4.43265900
-2.15020100	0.0000000	2.49223200
1.20905000	0.0000000	4.43265900
2.15020100	0.0000000	2.49223200
0.00000000	0.0000000	5.13494300
-2.15258500	0.0000000	4.97065600
2.15258500	0.0000000	4.97065600
0.0000000	0.0000000	6.22094600
0.00000000	-2.97705500	-3.09287500
-0.87662300	-2.58973400	-3.62070400
0.87662300	-2.58973400	-3.62070400
0.00000000	-4.06/98800	-3.14982200
0.00000000	2.97705500	-3.0928/500
0.87662300	2.589/3400	-3.62070400
-0.87662300	2.36973400	-3.62070400
0.00000000	-3 11314600	2 01855700
0.00000000	-2 78600200	2 58352400
-0 87814000	-2 78600200	2 58352400
0.00000000	-4 20646600	1 99506100
0 00000000	-4 46339600	-0 54884800
0.00000000	4,46339600	-0.54884800
0.00000000	3.11314600	2.01855700
-0.87814000	2.78600200	2.58352400
0.87814000	2.78600200	2.58352400
0.00000000	4.20646600	1.99506100
2.44414300	0.0000000	-2.51577800
2.61663700	0.88999600	-1.89129300

Н	2.61663700	-0.88999600	-1.89129300
Н	3.18364800	0.0000000	-3.32313600
0	1.15719100	0.0000000	-3.09645800
С	-2.44414300	0.0000000	-2.51577800
Н	-2.61663700	-0.88999600	-1.89129300
Н	-2.61663700	0.88999600	-1.89129300
Н	-3.18364800	0.0000000	-3.32313600
0	-1.15719100	0.00000000	-3.09645800

Table S2. B3LYP/6-31+G(d,p) optimized Cartesian coordinates of the unusually stable hydrogenbonded complex between BODIPY **2** and TFA.

С	-1.82784600	-0.55468500	2.53596800
С	-0.90290400	-0.04468400	3.44414000
С	-1.55434600	0.08771000	1.28582500
С	-0.08074700	0.88344300	2.78409600
Ν	-0.47072800	0.96690100	1.48464100
С	-1.71354100	0.73015100	-1.06773800
С	-2.16386500	0.80048200	-2.42522800
С	-1.34528400	1.73376100	-3.05729900
С	-0.41675200	2.22899400	-2.12685800
N	-0.63530800	1.62719700	-0.92792700
В	0.15039900	1.83859300	0.37867300
С	-2.16319500	-0.02663100	0.02602800
С	-3.31475100	-0.96444600	-0.15185700
С	-4.62755400	-0.51532700	0.04887900
С	-3.09130300	-2.29808100	-0.52157900
С	-5.70369900	-1.39042500	-0.11865600
H	-4.80563200	0.51728100	0.33513900
С	-4.16914900	-3.17125100	-0.68886800
Н	-2.07591500	-2.65094100	-0.67806400
С	-5.47706700	-2.71982100	-0.48791900
Н	-6.71674900	-1.03262400	0.03940900
Н	-3.98557900	-4.20244100	-0.97561000
Н	-6.31395000	-3.39932700	-0.61835800
С	0.64330500	3.25024100	-2.37598400
Н	0.47332000	4.15772800	-1.78691600
Н	1.64011500	2.87641100	-2.11982500
Н	0.64372000	3.52339500	-3.43269900
С	1.04224100	1.66720600	3.37881300
Н	0.84854600	2.74420000	3.33782400
Н	1.17134500	1.38199500	4.42445000
Н	1.98764000	1.48513900	2.85684000
С	-3.27596600	0.05872200	-3.10533300
Н	-3.12480800	-1.02423600	-3.07334100
Н	-4.24555700	0.25839600	-2.64010800
Н	-3.33082700	0.36479300	-4.15311300
Н	-1.40291900	2.03804600	-4.09379300
Н	-0.81904700	-0.30969800	4.48953100
С	-2.87187300	-1.57473600	2.88142700
Н	-3.88411000	-1.20494800	2.69457700
Н	-2.75578900	-2.49263200	2.29765600
Н	-2.79249500	-1.83254300	3.94058200
0	6.98026600	-1.09024600	-0.65787800

С	4.74580300	-1.91412900	-0.32361500
F	4.11895800	-1.81148900	0.87209700
F	5.29239800	-3.13236200	-0.40316600
F	3.80318900	-1.81153100	-1.29013500
С	5.82097500	-0.79662500	-0.48160300
0	5.37258900	0.44010000	-0.40974500
Н	4.38515700	0.56355800	-0.26057000
С	1.69388000	1.38941200	0.15135900
N	2.78661900	1.03839500	-0.01833500
С	0.11971900	3.39028100	0.80469900
Ν	0.06710300	4.51056600	1.11393800

Table S9. M06-2X/6-31+G(d,p) optimized Cartesian coordinates for the first excited state of BODIPY **2**.

С С С С Ν С С С С Ν В С С С С С Н С Н С Н Η Η С Η Н Η С Н Н Η С Η Н Η Н Η С

0.579	46100	-2.583	95300	0.0000300
-0.559	33600	-3.372	34000	0.00000400
0.116	16200	-1.218	16700	0.00000700
-1.6983	39200	-2.533	36700	0.00000900
-1.285	80300	-1.2402	23000	0.00000700
0.116	14400	1.218	18200	0.00000000
0.579	41600	2.583	97900	-0.00001100
-0.559	39700	3.3723	34300	-0.00003600
-1.698	43700	2.533	34800	-0.00003300
-1.285	32300	1.2402	21900	0.00000400
-2.1832	27200	-0.000	01200	0.00001700
0.832	56800	0.000	01200	0.00000700
2.3203	19200	0.000	01300	0.00000300
3.025	04400	0.000	01300	-1.20758100
3.025	05000	0.000	00300	1.20758400
4.4189	98500	0.000	01200	-1.20776100
2.476	06300	0.000	01600	-2.14569500
4.4189	99100	0.000	00100	1.20775600
2.476	07400	-0.000	00200	2.14570000
5.117	18600	0.000	00700	-0.00000400
4.958	98400	0.000	01400	-2.14942000
4.9589	99500	-0.000	00500	2.14941200
6.2020	54600	0.000	00600	-0.00000700
-3.1262	20400	2.940	10900	-0.00007100
-3.651	70700	2.554	48200	-0.88212700
-3.651	73900	2.554	54800	0.88199300
-3.195	33200	4.028	18800	-0.00011200
-3.126	15200	-2.940	15800	0.00001500
-3.651	57600	-2.554	57500	0.88207700
-3.651	58200	-2.554	57700	-0.88204400
-3.195	75600	-4.0282	23800	0.00001600
1.9909	96100	3.0792	23300	-0.00001200
2.544	43900	2.733	68900	0.87896600
2.544	44700	2.733	66200	-0.87897600
1.990	52000	4.1713	39300	-0.00002900
-0.5972	22300	4.454	19700	-0.00006100
-0.597	14000	-4.454	19400	0.0000300
1.991	01900	-3.0793	17000	-0.00000100

Н	2.54449100	-2.73359300	-0.87897200
Н	2.54449300	-2.73359900	0.87897100
Н	1.99070900	-4.17132900	-0.00000400
С	-3.13113000	-0.00002000	1.31040600
С	-3.13116300	-0.00001000	-1.31034900
Ν	-3.79434500	-0.00003900	2.26073900
Ν	-3.79440900	-0.00001400	-2.26066100

Table S10. M06-2X/6-31+G(d,p) optimized Cartesian coordinates for the first excited state of the hydrogen-bonded complex between BODIPY **2** and TFA.

С С С С Ν С С С С Ν В С С С С С Н С Н С Η Η Н С Η Η Η С Н Н Н С Η Η Н Η Н С

-1.17340000	-2.12469800	1.36945600
0.03111700	-2.20809600	2.04993800
-1.24446200	-0.78082600	0.85239200
0.68910200	-0.95952500	1.97525700
-0.08623200	-0.10289400	1.26215400
-2.07968800	1.23231700	-0.23782900
-2.91638500	2.13121500	-0.99317200
-2.25359700	3.34843900	-1.00723200
-1.04110800	3.22005900	-0.29306600
-0.94333000	1.94783600	0.17102100
0.25717000	1.33484100	0.88422400
-2.24290800	-0.13368400	0.08789100
-3.45015700	-0.87768200	-0.35413400
-4.66181600	-0.72918600	0.32866900
-3.38173700	-1.73802700	-1.45477300
-5.79136600	-1.43276800	-0.08448400
-4.71306200	-0.06333400	1.18624500
-4.51231400	-2.43929300	-1.86973300
-2.43947800	-1.85253100	-1.98433100
-5.71801500	-2.28843200	-1.18422200
-6.72755700	-1.31479700	0.45213500
-4.45220400	-3.10259600	-2.72685000
-6.59822300	-2.83650600	-1.50533600
-0.01476400	4.26506100	-0.04783100
-0.01925200	4.58073400	1.00307500
0.99666800	3.90728800	-0.27173800
-0.22360300	5.13560700	-0.67050900
1.98798600	-0.57935700	2.58658500
1.83171100	0.03003100	3.48648900
2.53449000	-1.47928700	2.87246800
2.61047400	0.00679300	1.90261800
-4.23073700	1.84437500	-1.64725500
-4.19378900	0.93995800	-2.26162800
-5.02720500	1.69655300	-0.91010800
-4.50791100	2.68781900	-2.28329800
-2.58756100	4.25890400	-1.48838700
0.41995200	-3.07430200	2.56987800
-2.17462600	-3.22686700	1.22612900

S54

Н	-3.18364800	-2.90133600	1.49602900
Н	-2.22480500	-3.59797300	0.19691500
Н	-1.89067600	-4.05825100	1.87497800
0	6.12374900	-1.10344900	-2.43008900
С	4.79835200	-1.06342700	-0.43944400
F	4.87765300	-0.05452700	0.44169100
F	5.58429400	-2.04750500	-0.02113400
F	3.53123600	-1.50512500	-0.43842000
С	5.20712000	-0.57986200	-1.85442700
0	4.49037300	0.40831600	-2.33142300
Н	3.74372300	0.73052600	-1.74023200
С	1.54643700	1.31474900	-0.11479500
N	2.45533500	1.24096100	-0.82503300
С	0.65083700	2.19621100	2.18568600
N	0.91297700	2.81606900	3.12838700