Supporting Information for:

Enzymatic synthesis of glycerol carbonate using lipase immobilized on magnetic organosilica nanoflower as catalyst

Yingjie Du^a, Jing Gao ^{a,b*}, Weixi Kong^a, Liya Zhou^a, Li Ma^a, Ying He^a, Zhihong

Huang^a, Yanjun Jiang^{a,b*}

^a School of Chemical Engineering and Technology and ^b National-Local Joint

Engineering Laboratory for Energy Conservation of Chemical Process Integration and

Resources Utilization, Hebei University of Technology, No. 8 Guangrong Road,

Hongqiao District, Tianjin 300130, China

* Corresponding Author:

Address: No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, P.R. China

E-mail: yanjunjiang@hebut.edu.cn. Phone: 86-22-60204945. Fax:

86-22-60204294(Y.J.). E-mail: jgao@hebut.edu.cn. Phone: 86-22-60202416 (J.G.).

Computational formulas for quantitative analysis of GC and GL:

The standard curve of GL/cyclohexanol mass ratio to the peak area ratio:

$$M_{GL} = (A_{GL}/A_C - b_1) \times M_C/k_1$$

The standard curve of GC/cyclohexanol mass ratio to the peak area ratio:

$$M_{GC} = (A_{GC}/A_C - b_2) \times M_C/k_2$$

Computational formula of GL conversation rate:

$$C = (1 - M_{GLr}/M_{GLi}) \times 100\%$$

Computational formula of GC yield:

$$Y = (M_{GCe}/M_{GCt}) \times 100\%$$

Computational formula of selectivity:

$$S = Y/C$$

Note: C: GL conversation rate; Y: GC yield; S: selectively; A_{GL} : peak area of GL; A_{GC} : peak area of GC; A_{C} : peak area of cyclohexanol; M_{GL} : amount of GL; M_{GLr} : residual amount of GL; M_{GLi} : inital amount of GL; M_{C} : amount of cyclohexanol; MGC: amount of GC; M_{GCe} : experiment value of GC amount; M_{GCt} : theoretical value of GC amount. b_2 =0.1237 and k_2 = Mc/0.2958; b_1 = 0.06383 and k_1 = Mc/0.1880.

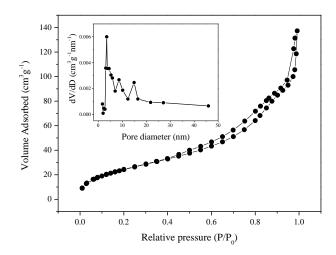


Figure S1 Nitrogen adsorption-desorption isotherms and pore size distribution profile of nanoflowers.

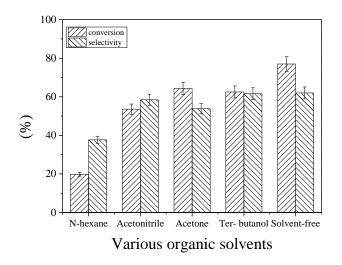


Figure S2. Effect of various organic solvents on the transformation rate of glycerol and the selectivity of immobilized enzyme