Surface patterning with SiO₂@PNiPAm core-shell particles

Jo Sing Julia Tang^{a,‡}, Romina Sigrid Bader^{a,‡}, Eric S.A. Goerlitzer^a, Jan Fedja Wendisch^b, Gilles Remi Bourret^b, Marcel Rey^a, Nicolas Vogel^{a,*}

^a Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg,

Cauerstrasse 4, 91058 Erlangen, Germany

^b Department of Chemistry and Physics of Materials, University of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria Supporting Information:

	Crosslinking				m(Silica
	density (BIS)	n(BIS)	m(BIS)	V(H ₂ O)	dispersion)
	[mol%]	[mmol]	[mg]	[mL]	[g]
JT049b-S9	5	1.25.10-1	19.3	45	3.767
JT049b-S3	5	1.25.10-1	19.3	46	2.852
JT049b-S1	5	1.25 10-1	19.3	45	3.767
JT049b-S7	2.5	6.25 ⁻ 10 ⁻²	9.636	45	3.767
JT049b-S8	10	2.5 10-1	38.543	45	3.767

Table S1 Respective amounts used for batch reaction.

Table S2 Amounts of reagents used for semi-batch reaction for further shell growth.

	Crosslinking					
	density					
	(BIS)	m (BIS)	c (NiPAm)	V(H ₂ O)	n(NiPAm)	m(NiPAm)
	[mol%]	[mg]	[mmol/mL]	[mL]	[mmol]	[mg]
JT049b-S9	5	43.9	2	2.85	5.7	645
JT049b-S3	5	63.4	2	4.5	9	1018
JT049b-S1	5	19.27	2	9	18	2037
JT049b-S7	2.5	69.377	2	9	18	2037
JT049b-S8	10	277.506	2	9	18	2037

Figure S1: Influence of shell thickness on the phase diagram of SiO₂@PNiPAm core-shell particles: a-g) $d_{\rm H}(50 \,^{\circ}{\rm C}) = 428 \,$ nm, h-n) $d_{\rm H}(50 \,^{\circ}{\rm C}) = 387 \,$ nm, o-u) $d_{\rm H}(50 \,^{\circ}{\rm C}) = 305 \,$ nm. a,d,g) Surface pressure – area isotherm. b,e,h) Optical image of the deposited silicon wafer. The regions correspond to the compression isotherm in (a,d,g), displaying the structural colors of the hexagonal non-close packed and close packed phase connected by the whitish phase transition region. The Roman numbers label representative SEM images of the observed

phases. Scale bar: $2 \mu m$. c,f,i) Interparticle distance distribution of the different phases labelled by the Roman numbers showing the nucleation of a second hexagonal phase.