SUPPLEMENTARY INFORMATION

RNA Aptamers with Specificity for Heparosan and Chondroitin Glycosaminoglycans

Megan Kizer^{1,6}, Peiqin Li^{2,3,6*}, Brady F. Cress^{4,6}, Lei Lin^{1,6}, Tom T Jing^{1,6}, Xing Zhang^{1,6}, Ke

Xia^{1,6}, Robert J. Linhardt^{1,3,4,5,6*}, and Xing Wang^{1,6*}

¹ Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute¹

² Department of Forest Pathology, College of Forestry, Northwest A&F University²

³ Department of Biology, Rensselaer Polytechnic Institute¹

⁴ Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute¹

⁵ Department of Biomedical Engineering, Rensselaer Polytechnic Institute¹

⁶ Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute¹

* Corresponding Authors: <u>lipg@nwafu.edu.cn</u>, <u>linhar@rpi.edu</u>, <u>wangx28@rpi.edu</u>

¹ Rensselaer Polytechnic Institute, 110 8th Avenue, Troy, New York 12180

² Northwest A&F University, Yangling 712100, Shaanxi, China

Table of Contents

Tables:

- S1. HE aptamer groups and sequences after two attempts at selection.
- **S2.** CH aptamer groups and sequences after one attempt at selection.
- **S3.** DNA oligonucleotides used for negative selection.
- S4. Sequence of RNA Library and Selection Primers (DNA).
- **S5.** Non-linear regression analysis for *KD* calculation of GAG-RNA binding complex.
- S6. Disaccharide analysis results.

Methods:

- 1. Nuclear Magnetic Resonance procedure.
- 2. Liquid chromatography-mass spectrometry procedure for GAG purity.

Figures:

- **S1.** NMR spectra of heparosan, hyaluronan chondroitin used for selection.
- **S2.** LCMS chromatograms of GAG disaccharide analysis
- **S3.** Structure of disaccharide standards for LCMS.
- S4. Confocal micrographs to confirm positive binding HE aptamers.
- **S5.** Confocal micrographs to confirm positive binding CH aptamers.
- **S6.** Sequence alignment of the HE and CH aptamer candidates.
- **S7.** Confocal micrographs of cross screening validation with HE aptamers.
- **S8.** Confocal micrographs of cross screening validation with CH aptamers.
- **S9.** NMR spectra of biotinylated GAGs.
- **S10.** Interaction of HE aptamer candidates with heparin.

Group	Aptamer RNA No.	No. of hits	Representative sequences	Molecular weight (g/mol)	
	HE-01	1	GGGAAGAGAAGGACAUAUGAUCCGCAUAAAGUGUAUCCGAUUU	22686.4	
			GGUUGCUGUUGACUAGUACAUGACCACUUGA		
	HE-02	1	GGGAAGAGAAGGACAUAUGAUCGAAUAGAAACUCGAGGUAAAA	22904.7	
			GCGGAGUGUUGACUAGUACAUGACCACUUGA		
	HE-03	20	GGGAAGAGAAGGACAUAUGAUGAAUGGAGGGAGGGAUAGCCUU	22985.7	
			CGUGAGGGUUGACUAGUACAUGACCACUUGA		
Δ	HE-04	1	GGGAAGAGAAGGACAUAUGAUUCGGAAUGAGCGCAGAAGUAGC	22849.6	
11			GCAUUGGC <i>UUGACUAGUACAUGACCACUUGA</i>		
	HE-05	1	<i>GGGAAGAGAAGGACAUAUGAU</i> GCCUGGCCCAAUAAAGUUCAUC	22722.5	
			GUCCGGGGUUGACUAGUACAUGACCACUUGA		
	HE-06	3	GGGAAGAGAGAGACAUAUGAUCCCCCAUUGCGGCCAAAAUGACAU	22729.5	
			AGGCGUGUUGACUAGUACAUGACCACUUGA		
	HE-07	1	<i>GGGAAGAGAAGGACAUAUGAU</i> UCGUUCAAGACGGCCUCUGGUU	22755.5	
			GCGGAUGGCUUGACUAGUACAUGACCACUUGA		
		2		22745 5	
	HE-08	2	GGGAAGAGAGGACAUAUGAUGCGGGAUGUGGUGUACCCGCUA	22/45.5	
		2		227(0.5	
	HE-09	2		22/69.5	
	LIE 10	2		22921 6	
	HE-10	2		22831.0	
	LIE 11	2		22865 6	
	HE-II	2		22803.0	
	UE 12	5		22701.6	
	1112-12	5	GGAGAUGUUUGACUACUACUACUGACCACUUGA	22/91.0	
	HE-13	1	GGGAAGAGAAGGACAUAUGAUCCAACGGUGGGCAGGAUAUCUC	22786 5	
	11L-15	1	AUGCAGUGUIUGACUAGUACAUGACCACUIUGA	22700.5	
В	HE-14	1	GGGAAGAGAGAGGACAUAUGAUCUCAAUAAGAGACAGCUUCCGG	22747 5	
		1	UGGCUUGGUUGACUAGUACAUGACCACUUGA	227 17.5	
	HE-15	1	GGGAAGAGAAGGACAUAUGAUCCCUGGUCUGGCCUUAACUACUC	22574.3	
			UCAGAGCUUGACUAGUACAUGACCACUUGA		
	HE-16	2	<i>GGGAAGAGAAGGACAUAUGAU</i> CCCAAACAGGAAAAGGGAUGGG	22894.7	
			GUCAGCCGUUGACUAGUACAUGACCACUUGA		
	HE-17	1	GGGAAGAAGGACAUAUGAUCCAAAACAACGUGGUCGAAGCA	22736.6	
			UGAUCCGCUUGACUAGUACAUGACCACUUGA		
	HE-18	1	GGGAAGAGAAGGACAUAUGAUCCUAUGCGAAAGCUCACUACCGA	22729.5	
			AGUCGGGUUGACUAGUACAUGACCACUUGA		
	HE-19	3	GGGAAGAGAAGGACAUAUGAUGGAUCAGUAUCCCACAACGAAA	23167.9	
			GCGCCGGGUUGACUAGUACAUGACCACUUGA		

Table S1. Sequences of the candidate RNA aptamers recovered post SELEX against heparosan (HE) GAG. The constant primer binding regions are indicated by italic letters.

Note: RNAs in the group A (GA) were recovered post SELEX with only using blank beads during the negative selection. RNAs in the group B (GB) were obtained post SELEX with using the DNA oligonucleotides, complementary to 'background-binding' RNAs, during the negative selection.

RNA No.	No. of hits	Representative Sequences (5'-3')	Molecular weight. g/mol
CH-01	1	GGGAAGAGAAGGACAUAUGAUCUCGCUCCGGGGGGGGGCCCUGAGCGGC GCUUGACUAGUACAUGACCACUUGA	22470.3
CH-03	1	GGGAAGAGAAGGACAUAUGAUUGCCAAUGGGAUCGCACAAGGAAUGG CCGGUUGACUAGUACAUGACCACUUGA	22848.6
CH-04	3	GGGAAGAGGACGACAUAUGAUCCUGGGCGGCGAGAGUAUGCGCGCGG GGGAAGAAGAAGGACAUAUGAUCCUGGGCGGCGAGAGUAUGCGCGCGGG	22927.6
CH-05	1	GGGAAGAGGACAUAUGAUGAUGAUGAUGAUGAUGUAUCAAACAGUGUAGCGGCACCU	22393.3
CH-07	1	GGGAAGAGAAGGACAUAUGAUCGCGUGUCGGCUCUUUGCCUCGUUGUG	22606.3
CH-08	1	GGGAAGAGAAGGACAUAUGAUCAUUCGCGCAAGUUUGUCGGCCGCGUG	22732.4
CH-09	1	GGGDAGAGAAGAACAUGAUCAGCOUGA GGGAAGAAGGACAUAUGAUCGGAUUGGGCAGAGGCUCGUACGUA	22818.5
CH-10	1	GGGAAGAAGGACAUAUGAUAGCCGGGCACCAUCUGGCAGAACGCUC	22719.5
CH-11	1	GGGAAGAAGGACAUAUGAUCACUGUGUGAGGGCAGCUAGUUG	22762.5
CH-12	1	GGGAAGAAGGACAUAUGAUCGGGGAACGGUAAUCUAUCGUGUGGCC	22763.5
CH-13	1	GGGAAGAGGACGACAUAUGAUCCCAAUGGGAUCGCACAAGGAAUGGCC	22518.4
CH-17	1	GGGAAGAGGACAUAUGAUAGGGAAGGUGCGGGUUGUCCAGUAGU	22922.6
CH-18	2	GGGAAGAGGACGACAUAUGACUUCCGCGGGAGGUCGGAAUGCGCUCAUG	21885.9
CH-20	5	GGGAAGAAGGACAUAUGAUCUGGAAUCGACGGGCAGGGCUCAGUU GCGCUUGACUAGUACAUGAUCUGGAAUCGACGGGCAGGGCUCAGUU	22817.5
CH-21	1	<i>GGGAAGAGGACAUAUGAU</i> UAGGGCAGGUGUAGGGUUGGUCCUUC	22852.5
CH-23	1	GGGAAGAGAAGGACAUAUGAUCAGGCUCCGGGGGGGGGG	22556.4
CH-26	1	GGGAAGAGAAGGACAUAUGAUGCAUAAGAUCCACAGUACGAGCGGUU GCAGUUGACUAGUACAUGACGACCACUUG	22480.4
CH-27	1	<i>GGGAAGAAGGACAUAUGAU</i> CCACGAUGAAGUGCGAAGGGGGGGGGU CUCC <i>UUGACUAGUACAUGACCACUUGA</i>	22840.6
CH-29	1	GGGAAGAAGGACAUAUGAUUUACGCAGAGCAGAUUAGCCGAGCCGC ACCUUGACUAGUACAUGACCACUUGA	22728.5
CH-31	1	GGGAAGAGAAGGACAUAUGAUACCGCCGGAGUGGAUAGGCAGGGGUG GUAGUUGACUAGUACAUGACCACUUGA	22960.7
CH-32	1	<i>GGGAAGAGGACAUAUGAU</i> CCCGAUGUACGCGGUUUGGGGGGCGUCA GGC <i>UUGACUAGUACAUGACCACUUGA</i>	22810.5
CH-33	1	GGGAAGAGAAGGACAUAUGAUAGGGACAAAGGUUGGGGUUGUCCGAG GCGGUUGACUAGUACAUGACCACUUGA	22961.7
CH-34	1	<i>GGGAAGAGAAGGACAUAUGAU</i> GAUGAGGUACUGGGGGGGGGG	22961.7
CH-35	10	<i>GGGAAGAGGACAUAUGAU</i> GGAGGGGAUUGGGGGCAUGUUGGGGC GUCC <i>UUGACUAGUACAUGACCACUUGA</i>	22970.6
CH-36	1	GGGAAGAGAAGGACAUAUGAUCCUGUCAUGGGGGGGGGG	21942.0
CH-37	1	GGGAAGAGAAGGACAUAUGAUGCGUUUCCGUGCGCCUUUCAGACGUCU GUGUUGACUAGUACAUGACCACUUGA	22630.3
CH-38	1	GGGAAGAAGAAGGACAUAUGAUCCUCAGCUCGUUGGACCCUGCCGGCCA	22570.3
CH-39	2	<i>GGGAAGAGAAGGACAUAUGAU</i> CCGCGGUGCUCACGGGGAGGAAGCUGU UAG <i>UUGACUAGUACAUGACCACUUGA</i>	22857.6

Table S2. Sequences of the candidate RNA aptamers candidates recovered post SELEX against chondroitin (CH) GAG. The constant primer binding regions are indicated by italic letters.

CH-41	1	GGGAAGAGAAGGACAUAUGAUUCGUUCUGGAAUAGGGCAAGGGUCAG	22826.6
		CCAGUUGACUAGUACAUGACCACUUGA	
CH-48	1	GGGAAGAGAAGGACAUAUGAUAGGAGGGGAUUGGGGGCAUAUAGGGGU	22962.7
		GUCCUUGACUAGUACAUGACCACUUGA	
CH-52	1	GGGAAGAGAAGGACAUAUGAUCAGGUUAGCAAUCUUGGAAAGCGAUC	22755.5
		ACUGUUGACUAGUACAUGACCACUUGA	
CH-56	1	GGGAAGAGAAGGACAUAUGAUCUUGAGGGGGGGGGGGGG	22946.7
		UUGAUUGACUAGUACAUGACCACUUGA	
CH-57	8	GGGAAGAGAAGGACAUAUGAUGAGCGCGUCGCCGUGUUACCGCGGGGG	22552.3
		GUGUUGACUAGUACAUGACCACUUG	
CH-59	1	GGGAAGAGAAGGACAUAUGAUCCGGUUCGUACGGCGCGCGUCGUCCU	22682.4
		CCGUUGACUAGUACAUGACCACUUGA	
CH-62	1	GGGAAGAGAAGGACAUAUGAUCGCCAACUAAGCAACCAAUUCAUGCGC	22672.5
		GGCUUGACUAGUACAUGACCACUUGA	
CH-64	2	GGGAAGAGAAGGACAUAUGAUGGAGGGGUAGUGGGGCUUAGAGGGGC	22993.7
		GUCCUUGACUAGUACAUGACCACUUGA	
CH-65	3	GGGAAGAGAAGGACAUAUGAUGGGACGGCGAGCCCGGCGUGCUAUCCC	22791.5
		AGCUUGACUAGUACAUGACCACUUGA	
CH-69	1	GGGAAGAAGGACAUAUGAUGACAGGGAAUUGAUGCGUUUGGCCCG	22858.6
		GCGGUUGACUAGUACAUGACCACUUGA	

Note: All RNAs were obtained post SELEX with using the DNA oligonucleotides, complementary to 'backgroundbinding' RNAs, during the negative selection.

No.	Sequence (5'-3')	
1	CCCTTCCC	
2	CCCTCCCT	
3	CCCTCCTT	
4	CCCCTCCA	
5	CCCACCCG	
6	CGC ACC CCT CCG CCC TCC	
7	CCT TCC TCC TCC TCC TTG	
8	CTA TCC CTC CCT CC	
9	CCC CTC CAC CCT CCT	
10	TCC CGC CCT CCT	
11	TAC CCT ACC CTC CA	

 Table S3. DNA oligonucleotides used for negative selection

Name	Sequence (5'-3')
Random RNA Library	UAGGGAAGAGAAGGACAUAUGAU (N ₃₀) UUGACUAGUACAUGACCACUUGA
T7 Forward Primer	TAG GGA AGA GAA GGA CAT ATG AT
T7 Reverse Primer	TCA AGT GGT CAT GTA CTA GTC AA

Table S4. Sequence of the RNA Library and Selection Primers (DNA) used in this study

N₃₀ indicates 30 nucleotides with equimolar incorporation of A, U, G and C at each position.

GAG	RNA Aptamer	Fitted Equation	R^2	B_{\max}	$K_{\rm D}$ (μ M)
	HE-08	$B = 54.526\ln(x) + 107.87$	0.9870	184	0.75
Heparosan	HE-13	$B = 26.586\ln(x) + 47.686$	0.9476	95	1.0
	HE-14	$B = 24.408\ln(x) + 51.972$	0.9965	87	0.71
	CH-09	$B = 36.791\ln(x) + 53.94$	0.9361	110	1.0
Chondroitin	CH-20	$B = 17.242\ln(x) + 33.161$	0.9287	54	0.76
	CH-32	$B = 23.042\ln(x) + 38.433$	0.9549	71	0.89
Heparin	HE-14	$B = 8.2488\ln(x) + 16.638$	0.8403	31	0.87

Table S5. Non-linear regression analysis for K_D calculation of GAG-RNA binding complexes.

"B" indicates the fluorescence intensity of GAG-RNA binding complex.

	Total Amount of Carbohydrate			
GAG	Beads (ng/ μ L)	Microplate (ng/well)		
Heparosan (HE)	87.0	21.2		
Chondroitin (CH)	5.2	78.4		
Hyaluronan (HA)	83.3	ND		

 Table S6.
 Quantification of glycosaminoglycan immobilized on the beads or microplate.

ND = not determined; HA GAG was not immobilized on microplates.

Methods

1. Nuclear Magnetic Resonance for confirmation of GAG purity and modification.

All the GAGs and biotinylated-GAGs were dissolved in 0.5 mL of 99.6% D₂O centrifuged at 5000 x g for 2 min and lyophilized. The process was repeated twice, and the final samples were dissolved in 0.5 mL of 99.96% D₂O. ¹H spectroscopy experiments were carried out at 298 K on a Bruker 800 MHz NMR spectrometer recorded for 32 scans with Topspin 2.1.6 software.

2. Liquid chromatography-mass spectrometry for GAG purity.

GAGs were digested and AMAC labeled following the method in the main text.

LC was performed on an Agilent 1200 LC system at 45 °C using an Agilent Poroshell 120 ECC18 (2.7 μ m, 2.1 × 150 mm) column. Mobile phase A (MPA) was 50 mM ammonium acetate aqueous solution, and the mobile phase B (MPB) was methanol. The mobile phase passed through the column at a flow rate of 150 μ L/min. The gradient start from 10% B to 46% B in 36 mins. An Ion Trap mass spectrometry system equipped with an ESI source (Agilent 6340) was used as detector. Full scan used from 350-900 m/z. In-software integration was used to calculate purity.

Figure S1. NMR Spectra of pure heparosan (A), hyaluronan (B) and chondroitin (C).

Figure S2. LC/MS full scan of disaccharide (Dp2) generated from GAG samples comparing with HS, CS, HA Dp2 standard. Samples tested are almost pure. Heparosan>97%, Heparin>99%, Chondroitin >95%, Hyaluronic acid>99%.

	O_2C O_4 O_1 O_2C $O_$	OH NHR OH		
CS disaccharides	structure 1	R.	S R.	R
		R ₂	R4	R ₆
TriS _{CS}	$\Delta UA2S(1,3)GalNAc4S6S$	SO ₃ -	SO ₃ -	SO ₃ -
2S4S _{CS}	$\Delta UA2S(1,3)GalNAc4S$	SO ₃ -	SO ₃ -	Н
2S6S _{CS}	$\Delta UA2S(1,3)GalNAc6S$	SO ₃ -	Н	SO ₃ -
4S6S _{CS}	$\Delta UA(1,3)$ GalNAc4S6S	Н	SO ₃	SO ₃ -
$2S_{CS}$	$\Delta UA2S(1,3)GalNAc$	SO ₃ -	Н	Н
4S _{CS}	$\Delta UA(1,3)$ GalNAc4S	Н	SO ₃ -	н
6S _{CS}	$\Delta UA(1,3)$ GalNAc6S	Н	Н	SO ₃
0S _{CS}	$\Delta UA(1,3)$ GalNAc	Н	Н	Н
HS disaccharides	structure 2	R ₂	NR	R ₆
TriS _{HS}	$\Delta UA2S(1,4)GlcNS6S$	SO ₃ -	SO ₃	SO ₃ -
NS6S _{HS}	$\Delta UA(1,4)$ GlcNS6S	Н	SO ₃ -	SO ₃ ⁻
NS2S _{HS}	$\Delta UA2S(1,4)GlcNS$	SO ₃ -	SO ₃ -	н
NS _{HS}	$\Delta UA(1,4)$ GlcNS	Н	SO ₃	н
2S6S _{HS}	$\Delta UA2S(1,4)$ GlcNAc6S	SO ₃	Ac	SO ₃ ⁻
6S _{HS}	$\Delta UA(1,4)$ GlcNAc6S	Н	Ac	SO ₃ -
2S _{HS}	$\Delta UA2S(1,4)GlcNAc$	SO ₃ -	Ac	н
0S _{HS}	$\Delta UA(1,4)$ GlcNAc	Н	Ac	н
HA disaccharides	structure 3			
0S _{HA}	$\Delta UA(1,3)$ GlcNAc			

Figure S3. Structure of unsaturated disaccharide standards.

HE-02

HE-04

HE-05

HE-06

Figure S4. Screening of RNA-HE GAG interaction. Confocal microscopy imaging of the candidate HE aptamers interacting with either the blank beads or the HE-beads. The HE candidate RNA aptamers in red show positive interaction with HE-beads in comparison with the interaction with the blank beads. "Confocal field" indicates the fluorescent channel image of the confocal microscopy while "Bright field" indicates the optical channel image.

CH-03

CH-04

CH-05

CH-29

Figure S5. Screening of RNA-CH GAG screening. Confocal microscopy imaging of the candidate CH aptamers interacting with either the blank beads or the CH-beads. The CH candidate RNA aptamers in red show positive interaction with CH-beads in comparison with the interaction with the blank beads. "Confocal field" indicates the fluorescent channel image of the confocal microscopy while "Bright field" indicates the optical channel image.

Figure S6. Sequence alignment of HE- and CH-binding RNA aptamers. Color-highlighted bases indicate the RNA regions showing no consensus sequence motif among the aptamers within each group. Dash lines indicate the artificial gaps generated by the sequence alignment algorithm to maximize the matched sequence alignment.

	HE	Beads	CH-Beads		HA-Beads	
	Confocal field	Bright field	Confocal field	Bright field	Confocal field	Bright field
Control	<u></u>		<u></u>		<u>1004</u>	
HE-01			<u>Pipe</u>			
HE-06	9 <u>099</u> 4		<u>2004</u>			
HE-07			<u> 700</u>		<u>.100.</u>	
HE-08			<u>.5%</u>		<u>Mar</u>	
HE-09			<u>ine</u>			
HE-10			<u></u>			

Figure S7. HE-aptamer selectivity screening. Confocal microscopy imaging of the candidate HE aptamers interacting with HE-, CH- and HA-beads. The candidate RNA aptamers in blue show high binding specificity HE in comparison with the interaction with the other two GAGs, CH and HA. "Confocal field" indicates the fluorescent channel image of the confocal microscopy while "Bright field" indicates the optical channel image.

Figure S8. CH-aptamer selectivity screening. Confocal microscopy imaging of the candidate CH aptamers interacting with CH-, HE- and HA-beads. The candidate RNA aptamers in blue show high binding specificity CH in comparison with the interaction with the other two GAGs, HE and HA. "Confocal field" indicates the fluorescent channel image of the confocal microscopy while "Bright field" indicates the optical channel image.

Figure S9. NMR Spectra of biotin-heparosan (A) and biotin-chondroitin (B). Biotin modification signal is highlighted by red boxes.

Figure S10. Screening of specific HE aptamer candidates against heparin. HE-08 and HE-13 show fluorescence levels close to the biotin used as a background control, while HE-14 shows slight binding to heparin.