Supporting Information

Exploring the inhibitory and antioxidant effects of fullerene and fullerenol

on Ribonuclease A

Pritam Roy[†], Sudipta Bag[†], Debanjana Chakraborty[†], and Swagata Dasgupta*

[†]Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

*Corresponding Author: Professor Swagata Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur, Kharagpur-721302. India Tel.: +91-3222-283306 Fax: +91-3222-282252 Email: swagata@chem.iitkgp.ac.in

S1. UV-Vis spectra of fullerene and fullerenol

•

Figure S1. UV- vis spectra of Fullerene (Ful) and Fullerenol (FulOH)

S2. MALDI-TOF

The MALDI-TOF spectrum of fullerene in water

Figure S2 . MALDI TOF spectrum of fullerene in water

S3. Microscopic studies of Fullerene and Fullerenol using Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM):

Figure S3. (a) FESEM (b) AFM images (c) particle size of fullerene and fullerenol Magnification for FESEM images: 114870 X (Fullerene), 50000 X (Fullerenol)

S4: DLS studies of fullerene and fullerenol in presence of RNase A

Figure S4. DLS measurements of fullerene (RNase A/Ful) and fullerenol (RNase A/FulOH) in presence of RNase A

Sizes of RNase A/Ful and RNase A/FulOH are 275.15 \pm 28.5 nm and 369.05 \pm 38.2 nm respectively.

Figure S5. (a) Agarose gel of monomer (RNase A) and dimer (RNase A + oxi, oxi= $K_2S_2O_8 + Co^{2+}$) (b) Relative intensities of the agarose gel (c) Lineweaver-Burk plot for monomer and dimer

Table S1 The V_{max} , K_M and k_{cat} , vales for RNase A monomer and DT crosslinked dimer calculated from Lineweaver–Burk plot.

	Monomer	Dimer
V_{max} (M min ⁻¹)	13.83 X 10 ⁻⁶	11.61 X 10 ⁻⁶
$K_{m}(\mathbf{M})$	434.87 X 10 ⁻⁶	635.65 X 10 ⁻⁶
K _{cat}	6.915	5.805