Supplementary Figures

Supplementary Figure 1. Scheme of solid-phase assisted synthesis of CUPRA linker.

Supplementary Figure 2. Application of SWARM for adduct subtraction from ESI mass spectra. (a) Portion of ESI mass spectrum acquired for an aqueous ammonium acetate (200 mM, pH 7) solution of $^{\text{Uni}}P_{\text{proxy}}$ (3 μ M), a subset of the OS^{mod} library (3 μ M each) and CUPRA linker (**CL** 3 μ M) in the absence (red trace) and presence (blue trace) of S₄ (50 μ M). Cyan trace corresponds to difference between these two mass spectra. (b) Data from (a) after treatment with SWARM.

Supplementary Figure 3. CUPRA screening results for CBM51, SNA, and MAA. Depletion index (*DI*) for each OS^{mod} measured in 200 mM aqueous ammonium acetate (pH 7) for: (a) CBM51 (25 μ M, 25 °C), (b) SNA (5 μ M, 25 °C), (c) MAA (50 μ M, 25 °C). Data shown in red indicate ligands identified from screening. Error bars represent standard deviations calculated for n=4 independent experiments.

Supplementary Figure 4. CUPRA screening results for siglec-2. Depletion index (*DI*) for each OS^{mod} measured in 200 mM aqueous ammonium acetate (pH 7) for siglec-2 (23 μ M) at: (a) 25 °C and (b) 0 °C. Data shown in red indicate ligands identified from screening. Error bars represent standard deviations calculated for n=4 independent experiments.

Supplementary Figure 5. Schematic of home-built temperature-controlled nanoESI device. The nanoESI tip is inserted into the central channel of the aluminum device through a small aperture 1.2 mm (i.d.). The tip is positioned such that ~1 mm of the tapered end protrudes from the end of the device. The temperature of the device was regulated by varying the flow rate of nitrogen gas that first passes through a U-tube in contact with a dry ice/ethanol bath and then through two symmetric gas flow channels at the outer edges of the device. The temperature of the device was measured by a thermocouple introduced through the angled channel and placed in proximity to the end of the nanoESI tip.

Supplementary Figure 6. Comparison of variable temperature CUPRA screening results with glycan array data for CTB₅: (a) Depletion index (*DI*) for each OS^{mod} measured in 200 mM aqueous ammonium acetate (pH 7) for CTB₅ (10 μ M). Data shown in red indicate ligands identified from screening. Error bars represent standard deviations calculated for n=4 independent experiments. (b) Partial readout in relative fluorescence units (RFU) of CFG array (entry CTB_14501_10ug_v5.0_DATA.xls) screened against CTB₅ (only compounds containing glycans found in CUPRA library are shown). CUPRA codes instead of CFG codes are used for ease of comparison.

Supplementary Figure 7. ESI mass spectra of 200 mM aqueous ammonium acetate (pH 7) solution of 0.04 mg/ml HMO library before (a) and after (b) modification with CUPRA linker (**CL**).

Supplementary Figure 8. Portion of ESI mass spectrum acquired for an aqueous ammonium acetate (200 mM, pH 7) solution of ^{Uni}P_{proxy} (3 μ M), a subset of the HMO library modified with CUPRA linker (**CL**) (0.08 mg/ml) and CUPRA linker (**CL**, 3 μ M) in the absence (red trace) and presence (blue trace) of hGal-3C (40 μ M). Cyan trace corresponds to difference between these two mass spectra. All mass spectra were treated with SWARM.

Supplementary Tables

Supplementary Table 1. Structures of CUPRA library components (OS^{mod}); **CL** (CUPRA linker moiety) represents the linker-affinity tag.

OS ^{mod}	Structure
ABH01	Gal
ABH02	Galα1-3Galβ1-4GlcNAc-CL
ABH03	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc-CL
ABH04	Fucα1-2Galβ1-4GlcNAcβ1-3Gal-CL
ABH05	Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4Glc-CL
ABH06	Fucα1-2Galβ1-3GalNAcβ1-3Gal-CL
ABH07	GalNAca1-3(Fuca1-2)Gal-CL
ABH08	GalNAca1-3(Fuca1-2)Gal B1-3GlcNAc-CL
ABH09	GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3Gal-CL
ABH10	$GalNAc\alpha 1-3 (Fuc\alpha 1-2)Gal\beta 1-3GlcNAc\beta 1-3Gal\beta 1-4Glc-CL$
ABH11	GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAc-CL
ABH12	$GalNAc\alpha 1-3 (Fuc\alpha 1-2)Gal\beta 1-4GlcNAc\beta 1-3Gal-CL$
ABH13	$GalNAc\alpha 1-3 (Fuc\alpha 1-2)Gal\beta 1-4GlcNAc\beta 1-3Gal\beta 1-4Glc-CL$
ABH14	$GalNAc\alpha 1-3 (Fuc\alpha 1-2)Gal\beta 1-3GalNAc\beta 1-3Gal-CL$
ABH15	GalNAca1-3(Fuca1-2)Gal β1-4Glc-CL
ABH16	Gala1-3(Fuca1-2)Galβ1-3GlcNAc-CL
ABH17	Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3Gal-CL
ABH18	Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glc-CL

- **ABH19** Gal α 1-3(Fuc α 1-2)Gal β 1-4GlcNAc-CL
- **ABH20** Gala1-3(Fuca1-2)Gal β 1-4GlcNAc β 1-3Gal-CL
- **ABH21** Gal α 1-3(Fuc α 1-2)Gal β 1-3GalNAc β 1-3Gal-CL
- GA01 Gal β 1-3GalNAc β 1-4(Neu5Ac α 2-3)Gal β 1-4Glc-CL
- GA02 Fuc α 1-2Gal β 1-3GalNAc β 1-4(Neu5Ac α 2-3)Gal β 1-4Glc-CL
- GA03 Neu5Acα2-3Galβ1-3GalNAcβ1-4Galβ1-4Glc-CL
- **GA04** GalNAc β 1-4Gal β 1-4Glc-CL
- GA05 $Gal\beta$ 1-3GalNAc β 1-4Gal β 1-4Glc-CL
- GA06 Neu5Aca2-8Neu5Aca2-3Galβ1-4Glc-CL
- **GA07** GalNAc β 1-4(Neu5Ac α 2-3)Gal β 1-4Glc-CL
- GA08 Gal β 1-4(Neu5Ac α 2-3)Gal β 1-4Glc-CL
- **GA09** Gal β 1-3GalNAc β 1-4(Neu5Ac α 2-8Neu5Ac α 2-3)Gal β 1-4Glc-CL
- **GA10** GalNAc β 1-4(Neu5Ac α 2-8 Neu5Ac α 2-3)Gal β 1-4Glc-CL
- **GL01** Galα1-4Galβ1-4GlcNAc-CL
- **GL02** GalNAc β 1-3Gal α 1-4Gal β 1-4Glc-CL
- **GL03** Gal β 1-3GalNAc β 1-3Gal α 1-4Gal β 1-4Glc-CL
- GL04 GalNAcα1-3GalNAcβ1-3Gal-CL
- **GL05** GalNAc α 1-3GalNAc β 1-3Gal α 1-4Gal β 1-4Glc-CL
- **GL06** Gal α 1-4Gal β 1-4Glc-CL
- GL07 Neu5Acα2-3Galα-4Galβ-4Glc-CL
- $GL08 \qquad Neu5Ac\alpha 2-3Gal\beta 1-3GalNAc\beta 1-3Gal\alpha 1-4Gal\beta 1-4Glc-CL$
- **GL09** Fuc α 1-2Gal β 1-3GalNAc β 1-3Gal α 1-4Gal β 1-4Glc-CL
- $GL10 \qquad GalNAc\alpha 1-3(Fuc\alpha 1-2)Gal\beta 1-3GalNAc\beta 1-3Gal\alpha 1-4Gal\beta 1-4Glc-CL$

- GL11 $Gal\alpha 1-3(Fuc\alpha 1-2)Gal\beta 1-3GalNAc\beta 1-3Gal\alpha 1-4Gal\beta 1-4Glc-CL$
- HMO01 Galβ1-4Glc-CL
- HMO02 Galβ1-3GlcNAcβ1-3Galβ1-4Glc-CL
- HMO03 Neu5Acα2-3Galβ1-4Glc-CL
- **HMO04** Fuc α 1-2Gal β 1-4(Fuc α 1-2)Glc-CL
- **HMO05** Fuc α 1-2Gal β 1-4Glc-CL
- **HMO06** Gal β 1-4(Fuc α 1-3)Glc-CL
- HMO07 Galβ1-4GlcNAcβ1-3Galβ1-4Glc-CL
- HMO08 Neu5Acα2-6Galβ1-4Glc-CL
- **HMO09** GlcA β 1-3Gal β 1-3GlcNAc β 1-3Gal β 1-4Glc-CL
- **LE01** Gal β 1-3(Fuc α 1-4)GlcNAc-CL
- **LE02** Gal β 1-3(Fuc α 1-4)GlcNAc β 1-3Gal-CL
- **LE03** Gal β 1-3(Fuc α 1-4)GlcNAc β 1-3Gal β 1-4(Fuc α 1-3)Glc-CL
- **LE04** Fuc α 1-2Gal β 1-3(Fuc α 1-4)GlcNAc-CL
- **LE05** Fuc α 1-2Gal β 1-3(Fuc α 1-4)GlcNAc β 1-3Gal-CL
- **LE06** Gal β 1-4(Fuc α 1-3)GlcNAc-CL
- **LE07** Gal β 1-4(Fuc α 1-3)GlcNAc β 1-3Gal-CL
- LE08 Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-3Gal-CL
- **LE09** Gal β 1-4(Fuc α 1-3)GlcNAc β 1-3Gal β 1-4(Fuc α 1-3)Glc-CL
- **LE10** Fuc α 1-2Gal β 1-4(Fuc α 1-3)GlcNAc β 1-3Gal-CL
- **LE11** Fucα1-2Galβ1-4(Fucα1-3)GlcNAc-CL
- **P01** Glcα1-4Glc-CL
- **P02** Glc β 1-4Glc-CL

P03 Galα1-6Glc-CL

P04 Glcα1-6Glcα1-6Glc-CL

OS ^{mod}	K _d (µM)	OS ^{mod}	K _d (µM)
ABH01	11.9 ± 0.7	GA01	10.3 ± 3.5
ABH02	16.4 ± 1.8	GA10	14.1 ± 1.9
ABH03	9.9 ± 3.2	GA02	18.7 ± 1.2
ABH04	9.2 ± 2.6	GA03	5.5 ± 1.7
ABH05	12.7 ± 3.8	GA04	10.8 ± 2.4
ABH06	4.1 ± 0.2	GA05	7.9 ± 1.0
ABH07	12.1 ± 2.4	GA06	26.4 ± 0.8
ABH08	18.4 ± 2.2	GA07	6.5 ± 0.3
ABH09	19.4 ± 2.9	GA08	12.4 ± 2.6
ABH10	15.8 ± 2.5	GA09	32.7 ± 1.2
ABH11	15.2 ± 0.8	GL01	10.4 ± 0.4
ABH12	22.4 ± 6.9	GL02	7.6 ± 1.5
ABH13	11.5 ± 3.0	GL03	7.4 ± 0.7
ABH14	4.7 ± 0.8	GL04	8.6 ± 0.9
ABH15	8.6 ± 3.7	GL05	6.9 ± 0.2
ABH16	32.9 ± 8.3	GL06	4.2 ± 0.8
ABH17	8.8 ± 2.2	GL07	14.0 ± 1.3
ABH18	16.0 ± 2.8	GL08	10.3 ± 1.3
ABH19	10.6 ± 2.4	GL09	18.1 ± 2.1
ABH20	13.0 ± 4.7	GL10	4.7 ± 0.4
ABH21	4.1 ± 0.8	GL11	7.9 ± 0.7
HMO01	5.1 ± 1.4	LE04	48.5 ± 5.0

Supplementary Table 2. Affinities (K_d) of OS^{mod} for ^{Uni}P_{proxy} measured by ESI-MS.^{a,b}

OS ^{mod}	Kd (µM)	OS ^{mod}	K_d (μM)
HMO02	6.6 ± 0.7	LE05	40.2 ± 13.0
HMO03	4.0 ± 0.7	LE06	13.0 ± 4.4
HMO04	6.0 ± 0.2	LE07	10.4 ± 2.6
HMO05	12.1 ± 0.9	LE08	11.6 ± 4.6
HMO06	7.2 ± 1.2	LE09	43.3 ± 12.7
HMO07	2.2 ± 0.5	LE10	9.0 ± 2.8
HMO08	14.6 ± 2.1	LE11	8.5 ± 3.6
HMO09	10.6 ± 1.4	P01	1.7 ± 0.6
LE01	15.9 ± 3.4	P02	8.9 ± 1.5
LE02	11.9 ± 4.0	P03	6.6 ± 2.0
LE03	8.1 ± 2.7	P04	5.9 ± 0.3

a. Errors correspond to one standard deviation. b. Affinities measured in 200 mM aqueous ammonium acetate (pH 7, 25 °C).

GBP	OS ^{mod}	T (°C)	$K_{d}\left(OS^{mod}\right)\left(\mu M\right)$	$K_{d}\left(OS\right)\left(\mu M ight)$	
SNA	HMO08	25	0.43 ± 0.01	NA ^g	_
MAA	HMO03	25	15 ± 1	NA ^g	
MAA	GA06	25	8.3 ± 0.1	NA ^g	
CTB ₅	GA01	25	0.66 ± 0.01	0.31 ± 0.03 $^{\rm c}$	
CTB ₅	GA02	25	45 ± 4	135 ± 4	
CBM51	ABH11	25	96 ± 10	$14.3\pm0.8~^{d}$	
CBM51	ABH12	25	110 ± 10	38 ± 3	
CBM51	ABH13	25	170 ± 40	40 ± 8	
CBM51	ABH15	25	100 ± 10	$17.2\pm0.6~^{\text{d}}$	
CBM51	ABH19	25	97 ± 18	17.2 ± 1.2 ^d	
CBM51	ABH20	25	92 ± 12	38 ± 5	
siglec-2	HMO08	25	110 ± 20	$281\pm10^{e,f}$	
siglec-2	HMO08	0	43 ± 10	NA ^g	

Supplementary Table 3. Affinities (K_d) of OS^{mod} for GBPs measured by CUPRA and affinities of the corresponding OS for the GBPs.^{a,b}

a. Errors correspond to one standard deviation. b. Unless otherwise noted, affinities were measured in 200 mM aqueous ammonium acetate (pH 7) by ESI-MS. c. Values taken from Lin et al. *J. Am. Soc. Mass Spectrom.* **25**, 104–110 (2014). d. Values taken from Han et al. *Glycobiology* **27**, 170–180 (2015). e. Measured by ITC in aqueous solution (pH 8.0) of 20 mM Tris and 150 mM NaCl. f. Value taken from Ereño-Orbea, J. et al. *Nat. Commun.* **8**, 764 (2017). g. NA = Not available.

Supplementary	Table 4.	List of	MWs	and	saccharide	composi	itions of	f extracted	HMOs	before
and after introduc	ction of C	CUPRA	linker	(CL)).					

НМО	MW (theoretical)	MW (experimental) ^a
Hex ₂ FucOH	488.17	488.18 ± 0.01
Hex ₂ Fuc-CL	1250.52	1250.51 ± 0.02
Hex ₂ Neu5AcOH	633.21	633.22 ± 0.01
Hex ₂ Neu5Ac-CL	1395.55	1395.55 ± 0.02
Hex ₃ HexNAcOH	707.25	707.26 ± 0.01
Hex ₃ HexNAc-CL	1469.59	1469.58 ± 0.02
Hex ₃ HexNAcFucOH	853.31	853.32 ± 0.01
Hex ₃ HexNAcFuc-CL	1615.65	1615.64 ± 0.02
Hex ₃ HexNAcNeu5AcOH	998.34	998.35 ± 0.01
Hex ₃ HexNAcNeu5Ac-CL	1760.68	1760.68 ± 0.03
Hex ₃ HexNAcFuc ₂ OH	999.36	999.37 ± 0.01
Hex ₃ HexNAcFuc ₂ -CL	1761.71	1761.70 ± 0.03
Hex4HexNAc2FucOH	1218.44	1218.45 ± 0.01
Hex4HexNAc2Fuc-CL	1980.78	1980.78 ± 0.03
Hex4HexNAc2Fuc2OH	1364.50	1364.52 ± 0.01
Hex4HexNAc2Fuc2-CL	2126.84	2126.82 ± 0.03
Hex4HexNAc2Fuc3OH	1510.55	1510.56 ± 0.01
Hex4HexNAc2Fuc3-CL	2272.90	2272.87 ± 0.04

a. Errors correspond to one standard deviation.

Supplementary Table 5. Apparent concentrations of modified (with CUPRA linker, CL) HMOs estimated from their binding to $^{Uni}P_{proxy}$ measured by ESI-MS and their apparent affinities (K_d, μ M) to hGal-3C measured by CUPRA.^{a,b}

НМО	Initial concentrations $(\mu M)^{\ c}$	$K_{d}\left(\mu M\right)$
Hex ₂ Fuc-CL	9.0 ± 0.1	NB
Hex2Neu5Ac-CL	8.4 ± 0.1	NB
Hex ₃ HexNAc-CL	15 ± 1	31 ± 4
Hex ₃ HexNAcFuc-CL	15 ± 1	2.5 ± 0.5
Hex ₃ HexNAcNeu5Ac-CL ^d	8.8 ± 0.2	20 ± 3
Hex ₃ HexNAcFuc ₂ -CL ^d	8.8 ± 0.2	20 ± 3
Hex4HexNAc2Fuc-CL	2.9 ± 0.1	29 ± 3
Hex ₄ HexNAc ₂ Fuc ₂ -CL	3.5 ± 0.1	87 ± 5
Hex4HexNAc2Fuc3-CL	1.2 ± 0.1	NB

a. Errors correspond to one standard deviation. b. Affinities measured in 200 mM aqueous ammonium acetate (pH 7, 25 °C). c. Values represent apparent concentrations corresponding to all HMOs of same MW (isomer set). d. Due to the small difference in MW, these two HMO isomer sets were treated as a single set.

NEU2	NEU3
0.000	0.008
0.000	0.000
0.524	0.551
0.443	0.298
0.000	0.009
0.000	0.034
0.000	0.247
0.000	0.292
0.000	0.462
0.918	0.523
1.000	1.000
0.004	0.275
0.188	0.494
	NEU2 0.000 0.000 0.524 0.443 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.918 1.000 0.004 0.188

Supplementary Table 6. Relative activities of sialylated OS^{mod} substrates measured by time-resolved CUPRA for NEU2 and NEU3 in 200 mM aqueous ammonium acetate (pH 7, 25 °C).