LION(D, PPI, LP) input: D: set of known disease proteins *PPI*: protein-protein interaction network *LPI*: lncRNA-protein interaction network output: *L*: the set of ranked candidate lncRNAs *PPI* sub \leftarrow subgraph of *PPI*, all edges involving a protein in D LPI sub \leftarrow subgraph of LPI, all edges involving a protein in N $S \leftarrow$ disease subnetwork, the union of *PPI sub* and *LPI sub* $N \leftarrow$ number of nodes of S $p^0 \leftarrow$ vector with size N, initialized to all zeros // probability vector for step 0 for each protein *i* in *D* do $p_i^0 \leftarrow 1 / (\text{number of elements in D})$ end for $p^k \leftarrow p^0$ $r \leftarrow 0.5$ // restart probability $W \leftarrow$ adjacency matrix of S, column normalized $p^{k+1} \leftarrow (1 - r) * (W \bullet p^k) + r * p^0$ while $|| p^{k+1} \cdot p^k ||_{L1} > 10^{-6}$ do $p^k \leftarrow p^{k+1}$ $p^{k+1} \leftarrow (1 - r) * (W \bullet p^k) + r * p^0$ // main iteration

end while

 $L \leftarrow$ subset of p^{k+1} representing all lncRNA nodes in S return L

// probability vector for step k

// probability vector for step k+1