Supplementary Materials

Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors

Domna Iordanidou,[†] Tryfon Zarganes-Tzitzikas,[‡] Constantinos G. Neochoritis,[‡] Alexander Dömling,^{*,‡} Ioannis N. Lykakis^{*,†}

[†]Department of Chemistry, Aristotle University of Thessaloniki, University Campus, GR-54124, Thessaloniki, Greece

[‡]Department of Pharmacy, Drug Design group, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands

Table of contents	Page		
Physicochemical characteristics of HMS mesoporous silica and the 10, 30 and 50% w/w Ag/HMS	S2		
TEM images of the (a) 10% Ag/HMS and (c) 30% Ag/HMS, and SEM image of the (b) 50% Ag/HMS	S2		
¹ H NMR spectra of the crude mixture of the in situ C-N cyclization process of amine a to the corresponding b, in CDCl ₃ (t=0 and 8h)			
¹ H and ¹³ C NMR data for nitro compounds 1-27	S4		
¹ H and ¹³ C NMR data for amines 1a-27a	S10		
¹ H and ¹³ C NMR data for dihydroquinoxalin-2-ones 21b-27b	S16		
Copies of ¹ H and ¹³ C NMR spectra	S18		

Catalyst ^a	Specific surface area ^b (m ² /g)	Total pore volume ^c (cm ³ /g)	Average pore size ^d (nm)	Ag crystal size ^e (nm)
HMS	727	1.066	3.3	-
10% Ag/HMS	382 (424)	1.313	13 ^f	15
30% Ag/HMS	129 (184)	0.875	24 ^f	25
50% Ag/HMS	76 (152)	0.284	$10^{\rm f}$	33

Table S1. Physicochemical characteristics of HMS mesoporous silica and the 10, 30 and 50%Ag/HMS catalysts prepared by the amines reduction method.²²

^a10%, 30% and 50% refer to the nominal Ag loading (wt.%) of the catalysts. ^bDetermined by the multi point BET method. ^cTotal pore volume at P/Po=0.99. ^dDetermined from the pore size distribution curves of BJH analysis based on N₂ adsorption data. ^eEstimated by Scherrer equation using the XRD data of the reflection at 2θ =38°. ^tThe catalysts contain also macroporous structure.

Figure S1. Transmission electron microscopy (TEM) images of the (a) 10% Ag/HMS and (c) 30% Ag/HMS, and scanning electron microscopy (SEM) image of the (b) 50% Ag/HMS.²²

Figure S2. ¹H NMR spectra of the crude mixture of the in situ C-N cyclization process of amine a to the corresponding b, in CDCl₃ (t=0 and 8h)

¹H and ¹³C NMR data for nitro compounds 1-27

N-(*tert-butyl*)-2-(*4-chlorophenyl*)-2-((*4-methoxybenzyl*)(*4-nitrophenyl*)*amino*)*acetamide* (*1*): Yellow solid, 1515 mg, yield 63%; ¹H NMR (500 MHz, CDCl₃): 8.07 (d, 2H, J= 9.3 Hz),7.28 (d, 2H, J= 8.5 Hz), 7.20 (d, 2H, J= 8.6 Hz), 7.00 (d, 2H, J= 8.6 Hz), 6.80 (dd, 4H, J_I = 9.1 Hz, J_2 = 2.5 Hz), 5.80 (s, 1H), 5.38 (s, 1H), 4.69 (d, 1H, J= 17.2 Hz), 4.49 (d, 1H, J = 17.2 Hz), 3.77 (s, 3H), 1.25 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 168.1, 159.1, 153.7, 139.2, 134.8, 133.1, 130.7 (2C), 129.2, 129.1 (2C), 127.8 (2C), 125.9 (2C), 114.4 (2C), 113.2 (2C), 67.8, 55.5, 52.5, 52.2, 28.6 (3C). HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₉ClN₃O₄ 482.1847, found 482.1838.

N-benzyl-2-(cyclohexyl(2-nitrophenyl)amino)-3-methylbutanamide (2): Orange oil, 961 mg, yield 47%; ¹H NMR (500 MHz, CDCl₃): 7.74-7.77 (m, 1H),7.48 (d, 1H, *J*= 8.0 Hz), 7.44 (t, 1H, *J*= 7.7 Hz), 7.31 (d, 1H, *J*= 8.0 Hz), 7.19 (t, 1H, *J*= 7.7 Hz), 7.14-7.16 (m, 3H), 7.01-7.03 (m, 1H), 4.47-4.51 (m, 1H), 4.10 (dd, 1H, *J*_{*I*}= 14.4 Hz, *J*₂= 4.8 Hz), 3.97 (d, 1H, *J*= 4.3 Hz), 2.78-2.84 (m, 1H), 2.16-2.22 (m, 1H), 1.75 (dt, 1H, *J*_{*I*}= 11.9 Hz, *J*₂= 3.2 Hz), 1.57-1.66 (m, 3H), 1.43 (dt, 1H, *J*_{*I*}= 13.1 Hz, *J*₂= 3.1 Hz), 1.08-1.15 (m, 1H), 1.05 (d, 3H, *J*= 6.9 Hz), 0.96-1.02 (m, 1H), 0.89 (d, 3H, *J*= 6.7 Hz), 0.65-0.78 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): 170.6, 149.8, 139.1, 138.3, 131.8, 131.1, 128.5 (2C), 127.9 (2C), 127.0, 126.3, 124.9, 69.9, 60.8, 42.9, 29.4, 28.4, 27.6, 26.1, 25.8, 25.5, 20.6, 16.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₃₂N₃O₃ 410.2444, found 410.2442.

N-cyclohexyl-2-((2-nitrophenyl)(propyl)amino)butanamide (3): Red- orange oil, 902 mg, yield 52%; ¹H NMR (500 MHz, CDCl₃): 7.59 (d, 1H, *J*= 8.0 Hz), 7.43 (t, 1H, *J*= 7.6 Hz), 7.25 (d, 1H, *J* = 8.3 Hz), 7.11 (t, 1H, *J*= 7.6 Hz), 6.83 (d, 1H, *J*= 8.7 Hz), 3.62-3.69 (m, 1H), 3.50-3.54 (m, 1H), 2.92-2.99 (m, 1H), 2.71-2.78 (m, 1H), 1.74-1.83 (m, 2H), 1.57-1.66 (m, 5H), 0.97-1.32 (m, 7H), 0.82 (t, 3H, *J*= 7.3 Hz), 0.70 (t, 3H, *J*= 7.3 Hz); ¹³C NMR (125 MHz, CDCl₃): 170.8, 147.0, 142.8, 132.7, 125.5, 124.9, 124.0, 69.0, 52.7, 47.7, 33.0, 32.6, 25.5, 24.72, 24.68, 22.9, 20.2, 11.4, 11.1. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₃₀N₃O₃ 348.2287, found 348.2283.

2-(*benzyl*(4-*nitrophenyl*)*amino*)-*N*-(2,5-*dichlorophenyl*)-4-*methylpentanamide* (4): Yellow oil, 1576 mg, yield 65%; Mixture of topo-isomers in ratio ca. 97/3; ¹H NMR (500 MHz, CDCl₃): 8.36 (s, 1H), 8.19 (br s, 1H), 8.12 (d, 2H, J= 9.4 Hz), 7.33 (m, 2H), 7.24-7.28 (m, 3H), 7.21 (d, 1H, J= 8.6 Hz), 7.01 (dd, 1H, J_1 = 8.7 Hz, J_2 = 2.5 Hz), 6.86 (d, 2H, J= 9.4 Hz), 4.79 (d, 1H, J= 17.0 Hz), 4.65 (d, 1H, J= 17.0 Hz), 4.54 (t, 1H, J= 6.3 Hz), 2.22 (q, 1H, J= 6.9 Hz), 1.66-1.79 (m, 2H), 0.99 (s, 3H), 0.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 169.4, 153.0, 139.5, 136.4, 134.8, 133.8, 129.8, 129.2 (2C), 128.0, 126.8 (2C), 126.2 (2C), 125.1, 121.4, 121.0, 113.4 (2C), 63.2, 52.9, 38.2, 26.0, 22.7, 22.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₆Cl₂N₃O₃ 486.1351, found 488.1343.

2-(4-chlorophenyl)-N-cyclohexyl-2-((4-methoxybenzyl)(4-nitrophenyl)amino)acetamide (5): Yellow solid, 1470 mg, yield 58%; ¹H NMR (500 MHz, CDCl₃): 8.06 (d, 2H, J= 9.3 Hz), 7.27 (d, 2H, J= 8.6 Hz), 7.20 (d, 2H, J= 8.4 Hz), 7.00 (d, 2H, J= 8.5 Hz), 6.79 (d, 4H, J= 8.9 Hz), 5.93 (d, 1H, J= 8.0 Hz), 5.46 (s, 1H), 4.66 (d, 1H, J= 17.1 Hz), 4.50 (d, 1H, J= 17.1 Hz), 3.76 (s, 3H), 1.73-1.80 (m, 1H), 1.54-1.63 (m, 2H), 1.43 (s, 2H), 1.20-1.35 (m, 3H), 1.04-1.12 (m, 1H), 0.92-1.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): 167.9, 159.1, 153.7, 139.1, 134.8, 133.2, 130.7 (2C), 129.1 (2C), 127.8 (2C), 125.9 (2C), 125.6, 114.4 (2C), 113.2 (2C), 67.4, 55.4, 52.3, 48.8, 32.9, 32.8, 30.5, 25.5, 24.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₃₀ClN₃O₄Na 530.1817, found 530.1801.

N-(*tert-butyl*)-2-(*4-chlorophenyl*)-2-((*4-methoxybenzyl*)(2-*nitrophenyl*)*amino*)*acetamide* (**6**): Orange oil, 1611 mg, yield 67%; ¹H NMR (500 MHz, CDCl₃): 7.64 (d, 1H, J= 8.0 Hz), 7.41 (d, 2H, J= 8.3 Hz), 7.31 (d, 3H, J= 8.3 Hz), 7.19 (t, 1H, J= 7.7 Hz), 7.14 (br s, 1H), 6.91 (d, 1H, J= 8.0 Hz), 6.68 (d, 2H, J= 8.4 Hz), 6.62 (d, 2H, J= 8.4 Hz), 4.68 (s, 1H), 3.93 (s, 2H), 3.74 (s, 3H), 1.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 169.2, 159.4, 147.6, 142.0, 135.2, 134.2, 132.5, 130.9 (2C), 130.0 (2C), 129.0 (2C), 127.6, 126.2, 125.6, 124.5, 113.7 (2C), 71.7, 57.1, 55.3, 51.1, 28.4 (3C). HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₉ClN₃O₄ 482.1847, found 482.1838.

N-(*tert-butyl*)-2-(*4*-*chlorophenyl*)-2-((*3*-*methoxybenzyl*)(*2*-*nitrophenyl*)*amino*)*acetamide* (7): Yellow solid, 1515 mg, yield 63%; ¹H NMR (500 MHz, CDCl₃): 7.66 (dd, 1H, J_1 = 8.0 Hz, J_2 = 1.3 Hz), 7.40 (d, 2H, J= 8.4 Hz), 7.32-7.35 (m, 3H), 7.19 (t, 1H, J= 7.7 Hz), 7.12 (br s, 1H), 7.07 (t, 1H, J= 7.9 Hz), 6.95 (d, 1H, J= 8.1 Hz), 6.75 (dd, 1H, J_1 = 8.3 Hz, J_2 = 2.3 Hz), 6.34 (d, 1H, J= 7.5 Hz), 6.28 (br t, 1H), 4.73 (s, 1H), 3.98 (q, 2H, J= 13.5 Hz), 3.66 (s, 3H), 1.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 169.0, 159.6, 147.4, 142.0, 135.9, 134.8, 134.3, 132.6, 130.2 (2C), 129.4, 129.1 (2C), 127.3, 125.6, 124.7, 121.8, 114.7, 113.9, 71.9, 57.2, 55.2, 51.2, 28.4 (3C). HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₉ClN₃O₄ 482.1847, found 482.1840.

N-(*4*-*bromobenzyl*)-2-(*N*-*cycloheptylacetamido*)-2-(*3*-*nitrophenyl*)*acetamide* (8): Dark brown oil, 1979 mg, yield 79%; ¹H NMR (500 MHz, CDCl₃): 8.10-8.13 (m, 2H), 7.60 (d, 1H, J = 7.7 Hz), 7.48 (t, 1H, J = 8.0 Hz), 7.43 (d, 2H, J = 8.3 Hz), 7.14 (d, 2H, J = 8.3 Hz), 4.41 (d, 2H, J = 6.0 Hz), 3.83-3.9 (m, 1H), 2.24 (s, 3H), 1.44-1.97 (m, 12H); ¹³C NMR (125 MHz, CDCl₃): 171.5, 170.3, 148.5, 138.8, 137.2, 133.2, 131.9 (2C), 129.7, 129.5 (2C), 122.8, 122.1, 121.4, 62.4, 53.6, 43.3, 34.1, 33.9, 27.3, 27.2, 25.4, 25.1, 23.1. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₄H₂₉BrN₃O₄ 502.1341, found 502.1335.

N-((*1s*,*3s*)-adamantan-1-yl)-2-(*N*-cyclopentylformamido)-2-(*4*-nitrophenyl)acetamide (9): Pale brown solid, 1381 mg, yield 65%; ¹H NMR (500 MHz, CDCl₃): 8.37 (s, 1H), 8.19 (d, 2H, *J*= 8.7 Hz), 7.51 (d, 2H, *J* = 8.7 Hz), 6.38 (s, 1H), 5.43 (s, 1H), 3.92-3.98 (m, 1H), 1.99-2.12 (m, 10H), 1.46-1.79 (m, 14H); ¹³C NMR (125 MHz, CDCl₃): 167.7, 163.2, 147.5, 143.1, 128.7 (2C), 123.8 (2C), 61.3, 59.6, 52.7,

41.4 (3C), 36.4 (3C), 32.5, 32.3, 29.5 (3C), 24.2, 24.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₂N₃O₄ 426.2393, found 426.2385.

N-benzyl-2-(4-chlorophenyl)-N-(2-((2-methoxy-4-nitrophenyl)amino)-2-oxoethyl)acetamide (10): Yellow solid, 1494 mg, yield 64%; ¹H NMR (500 MHz, CDCl₃): 8.87 (s, 1H), 8.45 (d, 1H, J= 8.6 Hz), 7.84 (d, 1H, J= 8.6 Hz), 7.69 (s, 1H), 7.34-7.39 (m, 3H), 7.29 (d, 2H, J= 8.0 Hz), 7.22 (d, 2H, J = 7.3 Hz), 7.17 (d, 2H, J = 6.8 Hz), 4.73 (s, 2H), 4.19 (s, 2H), 3.91 (s, 3H), 3.85 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): 172.4, 167.4, 147.5, 143.1, 135.2, 133.5, 133.0, 132.7, 130.3 (2C), 129.1 (2C), 128.8 (2C), 128.2, 126.7 (2C), 118.4, 117.4, 105.2, 56.3, 52.9, 51.5, 39.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₂₃ClN₃O₅ 468.1326,found 468.1318.

N-(4-methoxybenzyl)-1-(4-nitrophenyl)-1-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-

yl)methanamine (**11**): Pale brown solid, 1943 mg, yield 86%; ¹H NMR (500 MHz, CDCl₃): 8.22 (d, 2H, J= 8.7 Hz), 7.57 (d, 2H, J= 8.7 Hz), 7.22 (d, 2H, J= 8.6 Hz), 6.87 (d, 2H, J= 8.6 Hz), 5.35 (s, 1H), 3.80 (s, 3H), 3.69 (d, 2H, J= 6.8 Hz), 1.80 (d, 2H, J= 4.4 Hz), 1.66 (s, 3H), 1.63 (s, 3H), 0.64 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 159.3, 154.9, 147.9, 130.2, 129.72 (2C), 129.65 (2C), 124.3 (2C), 114.2 (2C), 65.4, 56.6, 55.5, 54.0, 50.7, 31.7, 30.7 (3C), 30.5, 30.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₃N₆O₃ 453.2614, found 453.2607.

N-((*1*-(*tert-butyl*)-*1H-tetrazol-5-yl*)(*5-chloro-2-nitrophenyl*)*methyl*)*propan-2-amine* (**12**): Pale white solid, 1619 mg, yield 92%; ¹H NMR (500 MHz, CDCl₃): 7.91 (d, 1H, *J*= 8.6 Hz), 7.44 (dd, 1H, *J*₁= 8.6 Hz, *J*₂= 1.8 Hz), 7.20 (s, 1H), 6.34 (s, 1H), 2.60-2.67 (m, 1H), 1.74 (s, 9H), 1.04 (d, 3H, *J*= 6.2 Hz), 1.00 (d, 3H, *J*= 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃): 154.4, 147.4, 139.9, 136.3, 129.4, 129.3, 126.9, 62.2, 50.8, 47.0, 30.0 (3C), 22.9, 22.1. HRMS (ESI) *m/z*: $[M+H]^+$ calcd for C₁₅H₂₂ClN₆O₂ 353.1493, found 353.1488.

Methyl 2-(5-((3-nitrophenyl)(p-tolylamino)methyl)-1H-tetrazol-1-yl)acetate (**13**): Dark brown oil, 1146 mg, yield 60%; ¹H NMR (500 MHz, CDCl₃): 8.29 (br t, 1H), 8.14 (d, 1H, J= 8.0 Hz), 7.77 (d, 1H, J= 7.7 Hz), 7.52 (t, 1H, J= 8.0 Hz), 6.95 (d, 2H, J= 8.0 Hz),6.55 (d, 2H, J= 8.3 Hz), 6.09 (d, 1H, J= 7.0 Hz), 5.25 (s, 2H), 3.66 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 166.1, 155.5, 148.5, 142.4, 139.3, 133.8, 130.2, 130.1 (2C), 129.5, 123.7, 122.6, 114.4 (2C), 53.3, 53.1, 48.9, 20.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₉N₆O₄ 383.1468, found 383.1463.

N-(*1*-(*1*-(*4*-methoxy-2-nitrphenyl)-1*H*-tetrazol-5-yl)-3-methylbutyl)cyclopentanamine (**14**): Dark brown oil, 1346 mg, yield 72%; ¹H NMR (500 MHz, CDCl₃): 7.76 (d, 1H, J= 2.8 Hz), 7.45 (d, 1H, J= 8.6 Hz), 7.31 (dd, 1H, J_1 = 8.8 Hz, J_2 = 2.6 Hz), 4.00 (s, 3H), 3.93 (t, 1H, J= 7.0 Hz), 2.91 (q, 1H, J= 6.0 Hz), 1.40-1.70 (m, 8H), 0.97-1.27 (m, 3H), 0.83 (d, 3H, J= 6.5 Hz), 0.77 (d, 3H, J= 6.4 Hz); ¹³C NMR (125 MHz, CDCl₃): 161.9, 145.7, 131.1, 119.9, 119.7, 111.3, 57.3, 56.7, 49.8, 43.7, 33.4, 32.8,

24.8, 24.0, 23.9, 22.8, 22.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₇N₆O₃ 375.2145, found 375.2137.

N-(*1*-(*1*-*benzyl*-*1H*-*tetrazol*-*5*-*yl*)*cyclohexyl*)-2-*methyl*-5-*nitroaniline* (*15*): Yellow solid, 1293 mg, yield 66%; ¹H NMR (500 MHz, DMSO-d₆): 7.29 (d, 1H, J= 8.1 Hz), 7.14 (d, 1H, J= 8.2 Hz), 7.06-7.07 (br t, 3H), 6.94-6.95 (m, 2H), 6.36 (s, 1H), 5.82 (s, 2H), 5.46 (br s, 1H), 2.44-2.47 (m, 2H), 2.31 (s, 3H), 2.05-2.08 (m, 3H), 1.49-1.64 (m, 4H), 1.34-1.38 (m, 1H); ¹³C NMR (125 MHz, DMSO-d₆): 159.1, 146.0, 142.8, 134.6, 132.3, 130.7, 128.1 (2C), 127.5, 127.0 (2C), 111.9, 105.3, 53.3, 50.6, 33.1, 24.6, 20.8 (2C), 18.0 (2C). HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₅N₆O₂ 393.2039, found 393.2032.

Methyl2-(((1-(tert-butyl)-1H-tetrazol-5-yl)(5-chloro-2-nitrophenyl)methyl)amino)-2-methylpropanoate (16):Orange- brown solid, 1804 mg, yield 88%; ¹H NMR (500 MHz, CDCl₃): 7.84(d, 1H, <math>J= 8.6 Hz), 7.41 (dd, 1H, J_I = 8.6 Hz, J_2 = 2.2 Hz), 7.05 (d, 1H, J= 2.1 Hz), 6.52 (s, 1H), 3.40 (s,3H), 1.71 (s, 9H), 1.29 (s, 3H), 1.24 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 174.9, 154.4, 147.3 139.7,136.4, 129.7, 129.3, 126.8, 62.2, 57.7, 52.1, 48.2, 30.0 (3C), 26.3, 24.4. HRMS (ESI) m/z: [M+Na]⁺calcd for C₁₇H₂₃ClN₆O₄Na 403.1620, found 403.1624.

Methyl 3-((2-(1-(tert-butyl)-1H-tetrazol-5-yl)-1-(4-nitrophenyl)ethyl)amino)propanoate (17): Red solid, 1375 mg, yield 76%; ¹H NMR (500 MHz, CDCl₃): 8.18 (d, 2H, J= 8.6 Hz), 7.53 (d, 2H, J= 8.6 Hz), 5.46 (s, 1H), 3.65 (s, 3H), 2.76-2.85 (m, 2H), 2.50 (t, 2H, J= 6.3Hz), 1.68 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 172.8, 154.7, 147.9, 145.6, 129.2 (2C), 124.2 (2C), 61.8, 58.4, 51.9, 43.4, 34.8, 30.2 (3C). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₃N₆O₄ 363.1781, found 363.1775.

Methyl 2-(((1-(*tert-butyl*)-1*H*-*tetrazol*-5-*yl*)(4-*nitrophenyl*)*methyl*)*amino*)*propanoate* (18): Yellow oil, 1466 mg, yield 81%; Mixture of diastereomers a and b in ratio d.r.=65/35: ¹H NMR (500 MHz, CDCl₃): 8.18 (d, 2H, *J*= 8.5 Hz, a), 8.17 (d, 2H, *J*= 8.3 Hz, b), 7.60 (d, 2H, *J*= 8.7 Hz, a), 7.51 (d, 2H, *J*= 8.6 Hz, b), 5.67 (s, 2H, a and b), 3.66 (s, 3H, a), 3.65 (s, 3H, b), 3.23-3.29 (m, 2H, a and b), 1.69 (s, 9H, a), 1.60 (s, 9H, b), 1.34 (d, 3H, *J*= 6.9 Hz, b), 1.30 (s, 3H, *J*= 6.8 Hz, a); ¹³C NMR (125 MHz, CDCl₃): 174.7 (b), 174.3 (a), 154.6 (a), 154.5 (b), 148.0 (a), 147.9 (b), 145.4 (b), 145.1 (a), 129.6 (2C, a), 129.4 (2C, b), 124.23 (2C, a), 124.21 (2C, b), 61.9 (a), 61.8 (b), 56.4 (b), 55.6 (a), 54.4 (b), 53.7 (a), 52.3 (b), 52.2 (a), 30.2 (3C, a), 30.1 (3C, b), 28.7 (b), 18.9 (a). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₆H₂₂N₆O₄Na 385.1595, found 385.1587.

Methyl 2-(((1-(*tert-butyl*)-1*H*-*tetrazol-5-yl*)(4-*nitrophenyl*)*methyl*)*amino*)-4-*methylpentanoate* (**19**): Yellow oil, 1474 mg, yield 73%; Mixture of diastereomers a and b in ratio *d.r.* =70/30: ¹H NMR (500 MHz, CDCl₃): 8.17 (d, 2H, J= 8.6 Hz, a), 8.14 (d, 2H, J= 8.6 Hz, b), 7.63 (d, 2H, J= 8.6 Hz, a), 7.52 (d, 2H, J= 8.6 Hz, b), 5.56 (s, 2H, a and b), 3.62 (s, 3H, a), 3.58 (s, 3H, b), 3.21 (t, 1H, J= 6.9 Hz, b), 3.14 (t, 1H, J= 6.9 Hz, a), 1.68 (s, 9H, a), 1.59 (s, 9H, b), 1.44-1.50 (m, 4H, a and b), 0.93-0.96 (m, 2H, a and b), 0.84 (d, 3H, J= 6.6 Hz, b), 0.81 (d, 6H, J= 6.6 Hz, a and b), 0.66 (d, 3H, J= 6.6 Hz, a); ¹³C NMR (125 MHz, CDCl₃): 174.9 (b), 174.7 (a), 154.7 (a), 154.4 (b), 148.0 (a), 147.8 (b), 145.5 (b), 145.3 (a), 129.7 (2C, a), 129.5 (2C, b), 124.0 (2C, a and b), 61.8 (a), 61.6 (b), 57.8 (b), 57.2 (a), 56.5 (b), 56.0 (a), 52.0 (a and b), 42.5 (b), 42.1 (a), 30.2 (3C, a), 30.0 (3C, b), 24.64 (b), 24.57 (a), 22.9 (b), 22.8 (a), 21.9 (b), 21.7 (a). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₉N₆O₄ 405.2250, found 405.2244.

Methyl 2-(((1-(*tert-butyl*)-1*H*-*tetrazol*-5-*yl*)(4-*nitrophenyl*)*methyl*)*amino*)-3-*methylbutanoate* (**20**): Yellow oil, 1657 mg, yield 85%; Mainly the one diastereomer in ratio *d.r.* =99/1: ¹H NMR (500 MHz, CDCl₃): 8.14 (d, 2H, *J*= 8.7 Hz), 7.60 (d, 2H, *J*= 8.7 Hz,), 5.47 (s, 1H), 3.59 (s, 3H), 2.87 (d, 1H, *J*= 5.8 Hz), 1.89-1.93 (m, 1H), 1.67 (s, 9H), 0.86 (d, 3H, *J*= 6.7 Hz), 0.83 (d, 3H, *J*= 6.7 Hz); ¹³C NMR (125 MHz, CDCl₃): 173.9, 154.8, 147.9, 145.4, 129.6 (2C), 123.9 (2C), 65.0, 61.7, 56.6, 51.8, 31.5, 30.1 (3C), 19.2, 18.2. HRMS (ESI) *m/z*: $[M+Na]^+$ calcd for C₁₈H₂₇N₆O₄Na 413.1908, found 413.1897.

Methyl 2-(2-((4-chlorobenzyl)(2-nitrophenyl)amino)acetamido)acetate (**21**): Brown oil, 997 mg, yield 51%; ¹H NMR (500 MHz, CDCl₃): 7.77 (d, 1H, J= 8.1 Hz), 7.72 (br t, 1H), 7.48 (t, 1H, J= 7.8 Hz), 7.23 (d, 2H, J= 8.3 Hz), 7.14-7.19 (m, 2H), 7.03 (d, 2H, J= 8.3 Hz), 4.14 (s, 2H), 4.04 (d, 2H, J= 5.8 Hz), 3.78 (s, 2H), 3.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 169.9, 169.7, 145.0, 143.6, 134.1, 133.9, 133.7, 130.3 (2C), 128.9 (2C), 125.9, 124.3, 124.2, 59.0, 55.5, 52.4, 41.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₉ClN₃O₅ 392.1013, found 392.1008.

Methyl 2-(2-((4-methoxybenzyl)(2-nitrophenyl)amino)acetamido)acetate (**22**): Orange oil, 1335 mg, yield 69%; ¹H NMR (500 MHz, CDCl₃): 7.83 (br t, 1H), 7.78 (dd, 1H, J_1 = 8.1 Hz, J_2 = 1.4 Hz), 7.47 (t, 1H, J= 7.8 Hz), 7.16 (t, 1H, J= 7.8 Hz), 7.13 (d, 1H, J= 8.2 Hz), 6.99 (d, 2H, J= 8.6 Hz), 6.78 (d, 2H, J= 8.6 Hz), 4.09 (s, 2H), 4.04 (d, 2H, J= 5.8 Hz), 3.79 (s, 2H), 3.76 (s, 3H), 3.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 170.1, 169.9, 159.5, 144.9, 144.0, 133.7, 130.3 (2C), 127.3, 125.9, 124.2, 124.0, 114.1 (2C), 59.5, 55.3, 54.9, 52.4, 41.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₁N₃O₆ 388.1509, found 388.1502.

Methyl 2-(2-(*butyl*(2-*nitrophenyl*)*amino*)*acetamido*)*acetate* (23): Orange oil, 904 mg, yield 56%; ¹H NMR (500 MHz, CDCl₃): 7.79 (br s, 1H), 7.74 (d, 1H, J= 8.1 Hz), 7.50 (t, 1H, J= 7.8 Hz), 7.26 (d, 1H, J= 7.1 Hz), 7.15 (t, 1H, J= 7.7 Hz), 4.06 (d, 2H, J= 5.8 Hz), 3.88 (s, 2H), 3.70 (s, 3H), 3.01 (t, 2H, J= 7.7 Hz), 1.37-1.43 (m, 2H), 1.16-1.24 (m, 2H), 0.82 (t, 3H, J= 7.3 Hz); ¹³C NMR (125 MHz, CDCl₃): 170.4, 169.9, 145.0, 144.0, 133.7, 125.8, 123.7 (2C), 56.4, 55.6, 52.4, 41.1, 29.1, 20.1, 13.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₂N₃O₅ 324.1559, found 324.1548.

Methyl 2-(2-(*cyclohexyl*(2-*nitrophenyl*)*amino*)*acetamido*)*acetate* (**24**): Red oil, 838 mg, yield 48%; ¹H NMR (500 MHz, CDCl₃): 8.11 (br s, 1H), 7.73 (d, 1H, *J*= 8.0 Hz), 7.50 (t, 1H, *J*= 7.8 Hz), 7.28 (d, 1H, *J*= 8.2 Hz), 7.18 (t, 1H, *J*= 7.7 Hz), 4.01 (d, 2H, *J*= 5.7 Hz), 3.93 (s, 2H), 3.66 (s, 3H), 2.78-2.83 (m, 1H), 1.83 (d, 2H, *J*= 11.3 Hz), 1.76 (d, 2H, *J*= 12.6 Hz), 1.59 (d, 1H, *J*= 12.9 Hz), 1.13-1.31 (m, 4H), 1.01-1.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 171.4, 169.8, 145.9, 143.6, 133.3, 125.7, 124.6,

124.0, 66.1, 52.2, 50.4, 41.0, 29.7 (2C), 25.8 (2C), 25.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄N₃O₅ 350.1716, found 350.1708.

Methyl 2-(2-(*cyclopentyl*(2-*nitrophenyl*)*amino*)*acetamido*)*acetate* (**25**): Orange oil, 871 mg, yield 52%; ¹H NMR (500 MHz, CDCl₃): 8.02 (br s, 1H), 7.73 (d, 1H, J= 8.0 Hz), 7.50 (t, 1H, J= 7.3 Hz), 7.29 (d, 1H, J= 8.2 Hz), 7.17 (t, 1H, J= 7.7 Hz), 4.01 (d, 2H, J= 5.8 Hz), 3.88 (s, 2H), 3.67 (s, 3H), 3.38-3.45 (m, 1H), 1.74-1.77 (m, 2H), 1.62-1.63 (m, 2H), 1.42-1.48 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 171.2, 169.8, 145.8, 144.6, 133.6, 125.7, 124.6, 124.2, 68.3, 52.3, 52.0, 41.0, 28.9 (2C), 23.5 (2C). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₂Cl₂N₃O₅ 336.1559, found 336.1550.

Methyl 2-(2-((*cyclopropylmethyl*)(2-*nitrophenyl*)*amino*)-3-*phenylpropanamido*)*acetate* (**26**): Brown oil, 1315 mg, yield 64%; ¹H NMR (500 MHz, CDCl₃): 7.67 (d, 1H, J= 8.0 Hz), 7.41 (br s, 1H), 7.28 (t, 1H, J= 7.5 Hz), 7.07-7.15 (m, 5H), 7.03 (d, 2H, J= 7.0 Hz), 3.98-4.13 (m, 3H), 3.74 (s, 3H), 3.33 (dd, 1H, J_I = 14.2 Hz, J_2 = 7.2 Hz), 3.26 (dd, 1H, J_I = 13.4 Hz, J_2 = 5.8 Hz), 2.94 (dd, 1H, J_I = 14.2 Hz, J_2 = 6.7 Hz), 2.76 (dd, 1H, J_I = 13.4 Hz, J_2 = 7.1 Hz), 0.67-0.74 (m, 1H), 0.32-0.42 (m, 2H), 0.06-0.11 (m, 1H), 0.01-0.03 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 172.2, 170.1, 147.8, 142.8, 138.3, 132.4, 129.1 (2C), 128.4 (2C), 126.9, 126.5, 124.8, 124.7, 70.0, 55.5, 52.4, 41.3, 35.9, 9.5, 4.3, 3.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆N₃O₅ 412.1872, found 412.1864.

Methyl 2-(2-(*benzo*[*d*][1,3]*dioxo*l-5-*y*l)-2-((2-*nitrophenyl*) (3,4,5-*trifluorobenzyl*)*amino*) acetamido) acetate (27): Orange oil, 1354 mg, yield 51%; ¹H NMR (500 MHz, CDCl₃): 7.65 (d, 1H, *J*= 8.0 Hz), 7.47 (br s, 1H), 7.38 (t, 1H, *J*= 7.7 Hz), 7.20 (t, 1H, *J*= 7.8 Hz), 7.03 (d, 1H, *J*= 8.1 Hz), 6.93 (s, 1H), 6.83 (d, 1H, *J*= 8.0 Hz), 6.72 (d, 1H, *J*= 8.0 Hz), 6.59 (t, 2H, *J*= 7.1 Hz),5.93 (s, 2H), 4.86 (s, 1H), 4.24 (d, 1H, *J*= 14.4 Hz),4.03-4.10 (m, 2H), 3.94 (dd, 1H, *J*_{*I*}= 18.1 Hz, *J*₂= 5.3 Hz), 3.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 170.8, 169.9, 152.0 (ddd, *J*_{*I*}= 250.3 Hz, *J*₂= 10.5 Hz, *J*₃= 3.8 Hz), 148.2, 148.1, 147.6, 140.3 (dt, *J*_{*I*}= 251.8 Hz, *J*₂= 15.5 Hz), 132.9, 132.0 (dd, *J*_{*I*}= 16.7 Hz, *J*₂= 6.0 Hz), 128.4, 127.3, 126.1, 125.1, 123.3, 113.5 (dd, *J*_{*I*}= 16.4 Hz, *J*₂= 5.4 Hz), 109.2, 108.5, 101.5, 71.5, 55.5, 52.5, 41.2. ¹⁹F (188 MHz, CDCl₃): -133.98 (m, 2F), -161.16 (m, 1F). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₅H₂₀F₃N₃O₇Na 554.1146, found 554.1132.

¹H and ¹³C NMR data for amines 1-27

2-((4-aminophenyl)(4-methoxybenzyl)amino)-N-(tert-butyl)-2-(4-chlorophenyl) acetamide (1a): Yellow oil, 83 mg, yield 92%; ¹H NMR (500 MHz, CDCl₃): 7.24-7.28 (m, 4H), 6.88 (d, 2H, J = 8.4 Hz), 6.74 (d, 2H, J = 8.4 Hz), 6.70 (d, 2H, J = 8.5 Hz), 6.53 (d, 2H, J = 8.5 Hz), 4.76 (s, 1H), 4.10 (d, 1H, J = 14.6 Hz), 3.94 (d, 1H, J = 14.6 Hz), 3.76 (s, 3H), 1.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 170.2, 158.8, 141.9, 140.6, 135.4, 133.6, 130.5 (2C), 129.8 (2C), 129.6, 128.6 (2C), 123.7 (2C), 115.9 (2C), 113.6 (2C), 72.0, 55.8, 55.3, 51.0, 28.6 (3C). HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₆H₃₁ClN₃O₂ 452.2105, found 452.2100.

N-benzyl-2-(cyclohexyl(2-nitrophenyl)amino)-3-methylbutanamide (2a): Yellow oil, 69 mg, yield 91%; ¹H NMR (500 MHz, CDCl₃): 7.20-7.24 (m, 2H), 7.13 (m, 2H), 7.02 (t, 1H, *J*= 6.3 Hz), 6.87 (t, 1H, *J*= 7.6 Hz), 6.82 (d, 1H, *J*= 7.5 Hz), 6.74 (t, 1H, *J*= 7.5 Hz), 6.62 (d, 1H, *J*= 7.8 Hz), 4.51 (dd, 1H, *J*= 14.9 Hz, *J*₂= 6.3 Hz), 4.32 (dd, 1H, *J*= 14.9 Hz, *J*₂= 5.6 Hz), 3.64 (d, 1H, *J*= 4.7 Hz), 2.33-2.40 (m, 1H), 1.06 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): 172.9, 138.4, 137.7, 128.7 (2C), 127.8 (2C), 127.4, 122.8, 120.0, 118.7, 113.5, 65.2, 43.2, 31.6, 19.9, 18.2. HRMS (ESI) *m/z*: $[M+H]^+$ calcd for C₂₄H₃₄N₃O 380.2702, found 380.2695.

2-((2-aminophenyl)(propyl)amino)-N-cyclohexylbutanamide (**3a**): Yellow oil, 59 mg, yield 93%; ¹H NMR (500 MHz, CDCl₃): 7.05 (d, 1H, J= 7.8 Hz), 6.95 (t, 1H, J= 7.5 Hz), 6.70-6.74 (m, 2H), 5.95 (br s, 1H), 4.12 (br s, 2H), 3.75 (m, 1H), 3.34 (br t, 1H), 2.96 (q, 1H, J= 7.2 Hz), 1.85 (d, 1H, J= 11.0 Hz), 1.56-1.76 (m, 6H), 1.33 (m, 4H, J= 12.0 Hz), 1.00-1.14 (m, 4H), 0.89 (t, 3H, J= 7.4 Hz), 0.80 (t, 3H, J= 7.3 H); ¹³C NMR (125 MHz, CDCl₃): 171.3, 143.6, 135.1, 125.8, 124.5, 118.7, 115.8, 68.8, 52.1, 47.8, 33.4, 33.0, 25.6, 24.95, 24.92, 23.3, 20.5, 11.9, 10.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₃₂N₃O 318.2545, found 318.2538.

2-((4-aminophenyl)(benzyl)amino)-N-(2,5-dichlorophenyl)-4-methylpentanamide (4a): Yellow oil, 80 mg, yield 89%; Mixture of topoisomers in ratio ca.97/3; ¹H NMR (500 MHz, CDCl₃): 9.35 (s, 1H), 8.54 (s, 1H), 8.54 (d, 1H, J= 2.2 Hz), 7.30 (d, 2H, J= 7.3 Hz), 7.23-7.26 (m, 3H), 7.18 (t, 1H, J= 7.1 Hz), 6.98 (dd, 1H, J_I = 8.5 Hz, J_2 = 2.4 Hz), 6.82 (d, 2H, J = 8.6 Hz), 6.59 (d, 2H, J = 8.6 Hz), 4.32 (s, 2H), 4.06 (t, 1H, J= 6.5 Hz), 1.92 (q, 1H, J= 6.9 Hz), 1.76 (q, 1H, J= 6.6 Hz), 1.57 (q, 1H, J= 7.0 Hz), 0.89 (d, 3H, J= 6.6 Hz), 0.86 (d, 3H, J= 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃): 172.3, 141.1, 140.2, 138.1, 135.7, 133.6, 129.8, 128.5 (2C), 128.3 (2C), 127.2, 124.3, 121.6 (2C), 120.9, 120.8, 116.3 (2C), 66.1, 54.4, 37.7, 25.9, 22.9, 22.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₈Cl₂N₃O 455.1531, found 456.1603.

2-((4-aminophenyl)(4-methoxybenzyl)amino)-2-(4-chlorophenyl)-N-cyclohexylacetamide (5a): Yellow oil, 86 mg, yield 90%; ¹H NMR (500 MHz, CDCl₃): 6.86 (d, 3H, J = 8.0 Hz), 6.69-6.77 (m, 7H), 6.53 (d, 2H, J = 7.9 Hz), 4.83 (s, 1H), 4.09 (d, 1H, J = 14.5 Hz), 3.95 (d, 1H, J = 14.5 Hz), 3.76 (s, 3H), 3.65-3.69 (m, 1H), 1.53-1.76 (m, 4H), 1.44 (s, 1H), 1.22-1.34 (m, 3H), 1.12-1.17 (m, 1H), 0.92-1.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 170.1, 158.8, 142.0, 140.5, 135.4, 133.7, 130.5 (2C), 129.9 (2C), 129.4, 128.6 (2C), 123.7 (2C), 115.9 (2C), 113.6 (2C), 71.2, 55.9, 55.3, 50.9, 47.8, 33.0, 30.4, 25.6, 24.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₃ClN₃O₂ 478.2261, found 478.2254.

2-((2-aminophenyl)(4-methoxybenzyl)amino)-N-(tert-butyl)-2-(4-chlorophenyl)acetamide (6a): Yellow oil, 81 mg, yield 90%; ¹H NMR (500 MHz, CDCl₃): 7.53 (d, 2H, J = 7.4 Hz), 7.37 (d, 2H, J = 7.6 Hz), 6.99 (d, 1H, J = 7.6 Hz), 6.94 (t, 1H, J = 7.6 Hz), 6.74 (d, 2H, J = 7.8 Hz), 6.68 (d, 3H, J = 8.5 Hz), 6.59 (d, 1H, J = 7.8 Hz), 6.46 (s, 1H), 4.63 (s, 1H), 3.90 (d, 1H, J = 12.3 Hz), 3.77 (d, 1H, J = 12.3 Hz), 3.73 (s, 3H),1.02 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 169.8, 159.1, 143.6, 137.0, 134.8, 133.9, 131.1 (2C), 129.7 (2C), 129.0 (2C), 128.5, 126.6, 125.1, 119.3, 115.6, 113.5 (2C), 73.6, 56.1, 55.3, 51.1, 28.3 (3C). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₃₁ClN₃O₂ 452.2403, found 452.2093.

2-((2-aminophenyl)(3-methoxybenzyl)amino)-N-(tert-butyl)-2-(4-chlorophenyl)acetamide (7a): Yellow oil, 83 mg, yield 92%; ¹H NMR (500 MHz, CDCl₃): 7.52 (d, 2H, J = 8.1 Hz), 7.37 (d, 2H, J = 8.1 Hz), 7.08 (t, 1H, J = 7.9 Hz), 7.00 (d, 1H, J = 7.6 Hz), 6.94 (t, 1H, J = 7.8 Hz), 6.74 (dd, 1H, $J_1 = 8.2$ Hz, $J_2 = 2.4$ Hz), 6.69 (t, 1H, J = 7.5 Hz), 6.60 (d, 1H, J = 7.8 Hz), 6.48 (m, 2H), 6.31 (br s, 1H), 4.65 (s, 1H), 3.92 (d, 1H, J = 12.8 Hz), 3.71 (d, 1H, J = 14.3 Hz), 3.61 (s, 3H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 169.8, 159.3, 143.5, 138.0, 136.8, 134.8, 134.0, 129.8 (2C), 129.1, 129.0 (2C), 126.7, 125.0, 122.1, 119.2, 115.6, 115.2, 113.4, 56.5, 55.1, 51.1, 50.8, 28.3 (3C). HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₃₀ClN₃O₂Na 474.1924, found 474.1920.

2-(3-aminophenyl)-N-(4-bromobenzyl)-2-(N-cycloheptylacetamido)acetamide (8a): Yellow oil, 78 mg, yield 84%; ¹H NMR (500 MHz, CDCl₃): 7.39 (d, 2H, J= 8.2 Hz), 7.13 (d, 2H, J= 8.2 Hz), 7.09 (t, 1H, J= 7.8 Hz), 6.72 (s, 1H), 6.68 (d, 1H, J= 7.5 Hz), 6.59 (d, 1H, J= 7.8 Hz), 6.46 (t, 1H, J = 6.4 Hz), 4.71 (br s, 2H), 4.40 (dd, 1H, J_I = 15.3 Hz, J_2 = 6.2 Hz), 4.30 (dd, 1H, J_I = 15.3 Hz, J_2 = 5.6 Hz), 3.79 (br t, 1H, J= 9.9 Hz), 2.21 (s, 3H), 2.10-2.16 (m, 1H), 1.91-1.93 (m, 1H), 1.74-1.76 (m, 1H), 1.45-1.63 (m, 9H), 1.32-1.34 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 170.72, 170.65, 170.57, 147.1, 138.5, 137.7, 137.7, 131.6 (2C), 129.8, 129.3 (2C), 125.6, 121.0, 118.5, 114.9, 114.6, 63.5, 61.8, 43.1, 43.0, 33.9, 33.7, 30.4, 29.8, 27.6, 27.5, 25.6, 25.5, 22.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₁BrN₃O₂ 472.1600, found 472.1593.

N-((1s,3s)-adamantan-1-yl)-2-(4-aminophenyl)-2-(N-cyclopentylformamido)acetamide (9a): Yellow oil, 69 mg, yield 88%; Mixture of topoisomers a and b in ratio a/b=3/1: ¹H NMR (500 MHz, CDCl₃): 8.34 (s, 1H, a), 8.06 (s, 1H, b), 7.13 (d, 2H, *J*= 8.1 Hz, a), 7.03 (d, 2H, *J*= 8.1 Hz, b), 6.65 (d, 4H, *J* = 8.1 Hz, a and b), 5.68 (s, 1H, a), 5.52 (s, 1H, b), 5.43 (s, 1H, a), 4.81 (s, 1H, b), 4.47 (q, 1H, *J*= 8.3 Hz, b), 3.82 (q, 1H, *J*= 8.4 Hz, a), 3.46 (s, 1H, a), 2.21 (s, 1H, b), 2.10-2.15 (m, 1H, a and b), 2.05 (d, 8H, J= 17.8 Hz, b), 1.98 (d, 8H, J= 12.0 Hz, a), 1.75-1.81 (m, 4H, a and b), 1.65 (d, 16H, J= 12.2 Hz, a and b), 1.50-1.58 (m, 4H, a and b), 1.40-1.44 (m, 2H, a and b), 1.24-1.32 (m, 4H, a and b); ¹³C NMR (125 MHz, CDCl₃): 168.9 (b), 168.8 (a), 164.1 (b), 162.7 (a), 146.8 (b), 146.5 (a), 129.9 (2C, a), 129.5 (2C, b), 125.7 (b), 125.5 (a), 115.4 (2C, b), 115.2 (2C, a), 62.9 (a and b), 60.5 (a), 58.5 (a), 54.8 (b), 52.7 (b), 52.3 (a), 41.5 (3C, b), 41.4 (3C, a), 36.4 (3C, a), 33.1 (a), 32.7 (a), 29.5 (3C, a and b), 24.3 (a), 36.3 (3C, b), 30.8 (b), 30.4 (b), 29.1 (b), 24.2 (2C, a and b), 24.1 (b). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₄N₃O₂ 396.2651, found 396.2647.

 $\begin{array}{ll} N-(2-((4-amino-2-methoxyphenyl)amino)-2-oxoethyl)-N-benzyl-2-(4-chlorophenyl) & acetamide \\ (10a): Yellow oil, 79 mg, yield 90%; ^1H NMR (500 MHz, CDCl_3): 8.17 (s, 1H),7.98 (d, 1H, J= 8.2 \\ Hz), 7.35 (t, 2H, J= 8.2 7.4 Hz), 7.24-7.27 (m, 3H), 7.19 (d, 2H, J= 8.2 Hz), 7.14 (d, 2H, J= 7.2 Hz), \\ 6.31 (d, 2H, J= 10.0 Hz), 4.69 (s, 2H), 3.99 (br s, 1H), 3.78 (s, 2H), 3.73-3.75 (m, 5H); ^{13}C NMR (125 MHz, CDCl_3): 172.1, 171.8, 166.1, 149.6, 143.5, 135.7, 133.1, 130.4 (2C), 129.2 (2C), 129.0 (2C), \\ 128.1, 126.7 (2C), 121.7, 119.1, 107.0, 98.5, 55.7, 52.7, 51.1, 39.8. HRMS (ESI)$ *m/z* $: [M+H]⁺ calcd for C₂₄H₂₅ClN₃O₃ 438.1584, found 438.1580. \\ \end{array}$

4-(((4-methoxybenzyl)amino)(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)methyl) aniline (**11a**): Yellow oil, 78 mg, yield 92%; ¹H NMR (500 MHz, CDCl₃): 7.24 (d, 2H, J= 8.3 Hz), 7.10 (d, 2H, J= 8.2 Hz), 6.85 (d, 2H, J = 8.3 Hz), 6.63 (d, 2H, J = 8.2 Hz), 5.14 (s, 1H), 3.79 (s, 3H), 3.68 (d, 2H, J= 5.5 Hz), 3.30 (br s, 2H), 1.79 (d, 1H, J= 15.0 Hz), 1.72 (d, 1H, J= 15.1 Hz), 1.62 (s, 3H), 1.59 (s, 3H), 0.61 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 159.0, 156.1, 146.7, 131.2, 129.7 (4C), 128.1, 115.4 (2C), 114.4, 114.0 (2C), 65.1, 56.9, 55.4, 53.5, 50.4, 31.5, 30.6 (3C), 30.5, 30.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₆N₆O 423.2872, found 423.2868.

2-((*1*-(*tert-butyl*)-*1H-tetrazol-5-yl*)(*isopropylamino*)*methyl*)-*4*-*chloroaniline* (**12a**): Light yellow solid, 60 mg, yield 94%; ¹H NMR (500 MHz, CDCl₃): 7.05 (dd, 1H, ${}^{1}J$ = 8.4 Hz, ${}^{2}J$ = 2.5 Hz), 6.68 (d, 1H, *J*= 8.4 Hz), 6.21 (d, 1H, *J*= 2.6 Hz), 5.45 (s, 1H), 2.62-2.70 (m, 1H), 1.59 (s, 9H),1.13 (d, 3H, *J*= 6.1 Hz),1.07 (d, 3H, *J*= 6.2 Hz); ¹³C NMR (125 MHz, CDCl₃): 154.7, 144.2, 129.1, 127.4, 126.2, 123.5, 118.4, 61.7, 52.8, 46.7, 30.0 (3C), 23.8, 21.6. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₅H₂₄ClN₆ 323.1751, found 323.1745.

Methyl 2-(5-((3-aminophenyl)(p-tolylamino)methyl)-1H-tetrazol-1-yl)acetate (**13a**): Yellow oil, 64 mg, yield 91%; ¹H NMR (500 MHz, CDCl₃): 7.10 (t, 1H, J = 7.7 Hz), 6.95 (d, 2H, J = 7.5 Hz), 6.67 (d, 1H, J = 7.5 Hz), 6.60 (d, 2H, J = 11.0 Hz), 6.54 (d, 2H, J = 8.1 Hz), 5.84 (s, 1H), 5.12 (d, 1H, J = 17.6 Hz), 5.03 (d, 1H, J = 17.6 Hz), 3.56 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 166.0, 156.2, 147.4, 143.6, 138.0, 130.3, 129.9, 128.8, 117.0, 115.7, 114.2, 113.5, 54.5, 53.1, 48.7, 20.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₁N₆O₂ 353.1726, found 353.1719.

2-(5-(1-(cyclopentylamino)-3-methylbutyl)-1H-tetrazol-1-yl)-5-methoxyaniline (**14a**): Yellow oil, 63 mg, yield 92%; ¹H NMR (500 MHz, CDCl₃): 8.23 (s, 1H), 7.00 (d, 1H, J= 8.6 Hz), 6.96 (d, 1H, J= 2.5 Hz), 6.54 (dd, 1H, ¹J = 8.6 Hz, ²J = 2.5 Hz), 4.03 (d, 1H, J= 6.6 Hz), 3.87 (s, 3H), 3.06 (t, 1H, J= 6.5 Hz), 1.47-1.77 (m, 11H), 0.76 (d, 3H, J= 6.6 Hz), 0.74 (d, 3H, J= 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃): 162.7, 157.9, 148.0, 128.5, 112.3, 107.0, 100.5, 57.3, 55.8, 49.8, 41.9, 33.3, 32.7, 25.2, 23.97, 23.95, 22.9, 21.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₉N₆O 345.2346, found 345.2344.

N^{*l*}-(*1*-(*1*-*benzyl*-*1H*-*tetrazol*-*5*-*yl*)*cyclohexyl*)-6-*methylbenzene*-*1*,*3*-*diamine* (**15***a*): Yellow oil, 64 mg, yield 89%; ¹H NMR (500 MHz, CDCl₃): 7.28 (t, 3H, *J*= 7.8 Hz), 7.08 (d, 2H, *J*= 4.9 Hz), 6.88 (d, 1H, *J*= 7.8 Hz), 6.06 (d, 1H, *J*= 7.8 Hz), 5.65 (s, 2H), 5.17 (s, 1H), 3.90 (s, 1H), 3.17 (br s, 2H), 2.19 (s, 3H), 1.97-2.08 (m, 4H), 1.59-1.66 (m, 4H), 1.32-1.36 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): 159.6, 145.6, 142.5, 135.1, 131.6, 128.9 (2C), 128.5, 127.6 (2C), 113.0, 105.9, 100.4, 54.2, 52.1, 34.0, 30.5, 24.9, 21.1 (2C), 17.0. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₈N₆ 363.2297, found 363.2286.

Methyl2-(((2-amino-5-chlorophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)amino)-2-methylpropanoate (16a): Light yellow solid, 69 mg, yield 91%; ¹H NMR (500 MHz, CDCl₃): 7.35 (d,1H, <math>J = 8.5 Hz), 7.24 (d, 1H, J = 8.6 Hz), 6.41 (s, 1H), 5.60 (s, 1H), 3.58 (s, 3H), 1.58 (s, 9H), 1.44 (s,3H), 1.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 176.2, 155.3, 146.5, 129.4, 127.3, 126.6, 126.4, 116.1,61.9, 58.5, 52.5, 49.6, 29.9 (3C), 26.14, 26.08. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₂₅ClN₆O₂Na403.1620, found 403.1624.

Methyl 3-(((4-aminophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)amino)propanoate (17a): Light yellow solid, 59 mg, yield 90%; ¹H NMR (500 MHz, CDCl₃): 6.98 (d, 2H, J = 8.2 Hz), 6.56 (d, 2H, J = 8.3 Hz), 5.17 (s, 1H), 3.60 (s, 3H), 2.71-2.81 (m, 2H), 2.45 (t, 2H, J = 6.7 Hz), 1.57 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 172.8, 155.9, 146.7, 129.1 (2C), 127.9, 115.2 (2C), 61.3, 58.6, 51.6, 43.1, 34.8, 29.9 (3C). HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₄N₆O₂Na 355.1853, found 355.1852.

Methyl 2-(((4-aminophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)amino)propanoate (18a): Yellow oil, 59 mg, yield 89%; Mixture of diastereomers a and b in ratio d.r.=65/35: ¹H NMR (500 MHz, CDCl₃): 7.06 (d, 2H, J = 6.6 Hz, a), 7.01 (d, 2H, J = 6.5 Hz, b), 6.56- 6.60 (m, 4H, a and b), 5.38 (s, 1H, a), 5.36 (s, 1H, b), 3.66 (s, 3H, a), 3.62 (s, 3H, b), 3.29-3.33 (m, 1H, a), 2.76-2.79 (m, 1H, b), 1.61 (s, 9H, a), 1.54 (s, 9H, b), 1.22-1.33 (m, 6H, J = 5.6 Hz, a and b); ¹³C NMR (125 MHz, CDCl₃): 175.1 (b), 174.8 (a), 155.8 (a), 155.6 (b), 147.3 (b), 146.7 (a), 129.8 (2C, a), 129.5 (2C, b), 127.9 (b), 127.2 (a), 115.5 (4C, a and b), 61.5 (a and b), 56.9 (b), 55.9 (a), 54.6 (b), 53.2 (a), 52.1 (a and b), 30.1 (3C, a), 30.0 (3C, b), 18.9 (a and b). HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₄N₆O₂Na 355.1853, found 355.1852.

Methyl 2-(((4-aminophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)amino)-4-methyl pentanoate (**19a**): Light yellow solid, 69 mg, yield 92%; Mixture of diastereomers a and b in ratio d.r.=70/30: ¹H

NMR (500 MHz, CDCl₃): 7.13 (d, 2H, J = 6.7 Hz, a), 7.04 (d, 2H, J = 6.7 Hz, b), 6.58-6.62 (m, 4H, a and b), 5.32 (s, 1H, a), 5.31 (s, 1H, b), 3.67 (s, 3H, a), 3.61 (s, 3H, b), 3.22-3.25 (m, 2H, a and b), 1.69-1.76 (m, 2H, a and b), 1.64 (s, 9H, a), 1.57 (s, 9H, b), 1.46-1.54 (m, 4H, a and b), 0.85-0.88 (m, 6H, b), 0.84 (d, 3H, J = 6.6 Hz, a), 0.68 (d, 3H, J = 6.4 Hz, a); ¹³C NMR (125 MHz, CDCl₃): 175.5 (b), 175.3 (a), 156.0 (a), 155.6 (b), 146.8 (a), 146.7 (b), 129.8 (a), 129.5 (b), 129.1 (b), 127.3 (a), 115.3 (a and b), 61.40 (a), 61.37 (b), 58.2 (b), 51.7 (b), 56.5 (a), 56.2(a), 51.93(a), 51.89 (b), 42.8 (b), 42.2 (a), 30.1 (3C, a), 30.0 (3C, b), 28.84 (b), 28.77 (a), 24.8 (b), 24.7 (a), 23.1 (a), 23.0 (b), 22.3 (b), 21.6 (a). HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₃₀N₆O₂Na 397.2322, found 397.2321.

Methyl 2-(((4-aminophenyl)(1-(tert-butyl)-1H-tetrazol-5-yl)methyl)amino)-3-methylbutanoate (**20a**): Light yellow solid, 67 mg, yield 93%; Mainly the one diastereomer in ratio d.r. = 99/1; ¹H NMR (500 MHz, CDCl₃): 7.11 (d, 2H, J = 8.3 Hz), 6.62 (d, 2H, J = 8.2 Hz), 5.25 (s, 1H), 3.66 (s, 3H), 2.97 (d, 1H, J = 5.9 Hz), 1.91-1.98 (m, 1H), 1.63 (s, 9H), 0.91 (d, 3H, J = 6.8 Hz), 0.87 (d, 3H, J = 6.8 Hz); ¹³C NMR (125 MHz, CDCl₃): 174.5, 156.2, 146.6, 129.9 (2C), 127.6, 115.3 (2C), 64.58, 61.41, 56.93, 51.71, 31.6, 30.1 (3C), 19.3, 18.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₈N₆O₂Na 383.2166, found 383.2166.

Methyl 2-(2-((2-aminophenyl)(4-chlorobenzyl)amino)acetamido)acetate (**21a**): Pale red oil, 71 mg, yield 99%; ¹H NMR (500 MHz, CDCl₃): 7.24 (d, 2H, J= 8.2 Hz), 7.11 (d, 2H, J= 8.1 Hz), 6.96 (t, 1H, J= 7.3 Hz), 6.92 (d, 1H, J= 7.8 Hz), 6.68-6.73 (m, 2H), 4.08 (s, 2H), 3.98 (d, 2H, J= 5.2 Hz), 3.73 (s, 3H), 3.67 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): 170.49, 170.47, 141.9, 135.9, 135.1, 133.6, 130.7 (2C), 128.7 (2C), 126.2, 123.0, 119.1, 116.2, 58.1, 56.9, 52.5, 41.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₁CIN₃O₃ 362.1271, found 362.1268.

Methyl 2-(2-((2-aminophenyl)(4-methoxybenzyl)amino)acetamido)acetate (**22a**): Pale red oil, 70 mg, yield 98%; ¹H NMR (500 MHz, CDCl₃): 7.31 (br t, 1H), 7.10 (d, 2H, J= 8.2 Hz), 6.94- 6.97 (m, 2H), 6.81 (d, 2H, J= 8.1 Hz), 6.70- 6.74 (m, 2H), 4.02 (s, 2H), 3.96 (d, 2H, J= 5.1 Hz), 3.78 (s, 3H), 3.73 (s, 3H), 3.69 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): 170.7, 170.5, 159.2, 142.1, 136.5, 130.7 (2C), 128.8, 126.1, 123.2, 119.1, 116.1, 113.9 (2C), 58.8, 56.9, 55.4, 52.5, 41.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₄N₃O₄ 358.1767, found 358.0937.

Methyl 2-(2-((2-*aminophenyl*)(*butyl*)*amino*)*acetamido*)*acetate* (**23***a*): Pale red oil, 57 mg, yield 97%; ¹H NMR (500 MHz, CDCl₃): 7.44 (br s, 1H), 7.06 (d, 1H, *J*= 8.2 Hz), 6.96 (t, 1H, *J*= 7.6 Hz), 6.71- 6.75 (m, 2H), 4.06 (d, 2H, *J*= 5.3 Hz), 3.74 (s, 2H), 3.65 (s, 3H), 2.95 (t, 2H, *J*= 7.7 Hz), 1.42- 1.47 (m, 2H), 1.27-1.37 (m, 2H), 0.87 (t, 3H, *J*= 7.3 Hz); ¹³C NMR (125 MHz, CDCl₃): 171.2, 170.6, 142.4, 136.6, 125.9, 122.7, 119.0, 116.1, 58.5, 55.1, 52.4, 41.0, 29.5, 20.5, 14.1. HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₂₄N₃O₃Na 316.1632, found 316.1615.

Methyl 2-(2-((2-*aminophenyl*)(*cyclohexyl*)*amino*)*acetamido*)*acetate* (**24***a*): Pale red oil, 63 mg, yield 99%; ¹H NMR (500 MHz, CDCl₃): 7.53 (br s, 1H), 7.04 (d, 1H, *J*= 7.8 Hz), 6.96 (t, 1H, *J*= 7.6 Hz), 6.71- 6.76 (m, 2H), 3.97 (d, 2H, *J*= 5.1 Hz), 3.78 (s, 2H), 3.70 (s, 3H), 2.73-2.78 (m, 1H), 1.90 (d, 2H, *J*= 11.4 Hz), 1.77 (d, 2H, *J*= 12.9 Hz), 1.60 (d, 1H, *J*= 12.6 Hz),1.15-1.35 (m, 4H), 1.04-1.09 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 172.0, 170.5, 142.9, 136.1, 125.9, 125.0, 118.9, 116.2, 62.4, 53.1, 52.4, 41.1, 30.2 (2C), 25.9 (3C). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₇H₂₆N₃O₃Na 342.1788, found 342.1771.

Methyl 2-(2-((2-*aminophenyl*)(*cyclopentyl*)*amino*)*acetamido*)*acetate* (**25***a*): Pale red oil, 60 mg, yield 98%; ¹H NMR (500 MHz, CDCl₃): 7.57 (br s, 1H), 7.10 (d, 1H, *J*= 8.1 Hz), 6.97 (t, 1H, *J*= 7.5 Hz), 6.73- 6.74 (m, 2H), 3.98 (d, 2H, *J*= 5.2 Hz), 3.75 (s, 2H), 3.71 (s, 3H), 3.43-3.47 (m, 1H), 1.73-1.77 (m, 2H), 1.62-1.65 (m, 2H), 1.45-1.53 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 171.7, 170.5, 143.3, 137.2, 126.3, 124.9, 119.3, 116.1, 66.3, 56.4, 52.4, 41.1, 29.8 (2C), 23.8 (2C). HRMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₆H₂₄N₃O₃ 328.1632, found 328.1614.

Methyl 2-(2-((2-*aminophenyl*)(3,4,5-*trifluorobenzyl*)*amino*)-2-(*benzo*[*d*][1,3]*dioxo*l-5*yl*)*acetamido*)*acetate* (**27***a*): Pale red oil, 97 mg, yield 97%; ¹H NMR (500 MHz, CDCl₃): 6.89-6.93 (m, 2H), 6.84 (d, 1H, J= 7.8 Hz), 6.75-6.79 (m, 3H), 6.65-6.70 (m, 3H), 6.60 (t, 1H, J= 7.5 Hz), 5.97 (s, 2H), 4.74 (s, 1H), 4.16 (d, 1H, J= 13.6 Hz), 3.93-4.00 (m, 2H), 3.87 (d, 1H, J= 13.7 Hz), 3.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 171.4, 170.3, 151.8 (ddd, J_I = 250.0 Hz, J_2 = 10.2 Hz, J_3 = 2.8 Hz), 148.3, 148.1, 142.9, 140.0 (dt, J_I = 250.2 Hz, J_2 = 14.5 Hz), 134.0 (dd, J_I = 17.2 Hz, J_2 = 5.6 Hz), 133.5, 130.5, 129.5, 126.4, 124.4, 119.7, 113.5 (dd, J_I = 16.7 Hz, J_2 = 4.5 Hz), 109.1, 108.5, 101.4, 70.8, 66.2, 52.6, 41.3. HRMS (ESI) *m*/*z*: [M+Na]⁺ calcd for C₂₅H₂₃F₃N₃O₅Na 524.1404, found 524.1374.

¹H and ¹³C NMR data for dihydroquinoxalin-2-ones 21b-27b

4-(4-chlorobenzyl)-3,4-dihydroquinoxalin-2(1H)-one (**21b**): Yellow oil, 53 mg, yield 97%; ¹H NMR (500 MHz, CDCl₃): 8.57 (br s, 1H), 7.32 (d, 2H, J = 8.3 Hz,), 7.25 (d, 2H, J = 8.3 Hz), 6.92-6.95 (m, 1H), 6.79 (d, 2H, J = 4.1 Hz), 6.70, (d, 1H, J = 8.0 Hz), 4.37 (s, 2H), 3.80 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): 166.9, 135.1, 135.0, 133.5, 129.2 (2C), 129.0 (2C), 126.3, 124.4, 119.5, 115.8, 112.5, 53.2, 52.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₄ClN₂O 273.0795, found 273.0788.

4-(4-methoxybenzyl)-3,4-dihydroquinoxalin-2(1H)-one (22b): Yellow oil, 49 mg, yield 92%; ¹H NMR (500 MHz, CDCl₃): 9.11 (br s, 1H), 7.23 (d, 2H, J = 8.2 Hz), 6.95 (t, 1H, J = 7.6 Hz), 6.88 (d, 2H, J = 8.2 Hz), 6.74-6.80 (m, 3H), 4.34 (s, 2H), 3.80 (s, 3H), 3.76 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): 167.5, 159.2, 135.5, 129.1 (2C), 128.2, 126.3, 124.3, 119.1, 115.8, 114.3 (2C), 112.3, 55.4, 53.0, 51.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₇N₂O₂ 269.1290, found 269.1284.

4-butyl-3,4-dihydroquinoxalin-2(1H)-one (**23b**): Yellow oil, 37 mg, yield 89%; ¹H NMR (500 MHz, CDCl₃): 9.18 (br s, 1H), 6.97 (t, 1H, J = 7.5 Hz), 6.78 (d, 1H, J = 7.5 Hz), 6.72 (t, 1H, J = 7.5 Hz), 6.69 (d, 1H, J = 8.2 Hz), 3.86 (s, 2H), 3.22 (t, 2H, J = 7.4 Hz), 1.59-1.65 (m, 2H), 1.37-1.45 (m, 2H), 0.98 (t, 3H, J = 7.4 Hz); ¹³C NMR (125 MHz, CDCl₃): 167.4, 135.2, 126.2, 124.3, 118.4, 115.8, 111.7, 52.3, 49.5, 27.3, 20.4, 14.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₂H₁₆N₂ONa 227.1155, found 227.1147.

4-cyclohexyl-3,4-dihydroquinoxalin-2(1H)-one (**24b**): Yellow oil, 41 mg, yield 91%; ¹H NMR (500 MHz, CDCl₃): 7.37 (d, 1H, J = 7.4 Hz), 7.02 (t, 1H, J = 7.7 Hz), 6.84 (t, 1H, J = 7.3 Hz), 6.72 (d, 1H, J = 8.0 Hz), 3.89 (s, 2H), 3.46 (t, 1H, J = 9.4 Hz), 1.88 (d, 2H, J = 11.4 Hz), 1.82 (d, 2H, J = 10.2 Hz), 1.72 (d, 1H, J = 13.1 Hz), 1.35-1.47 (m, 4H), 1.11-1.18 (m, 1H);¹³C NMR (125 MHz, CDCl₃): 161.4, 135.3, 127.4, 124.9, 118.7, 113.8, 112.1, 56.3, 46.4, 28.8 (2C), 26.0 (2C), 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₉N₂O 231.1497, found 231.1492.

4-cyclopentyl-3,4-dihydroquinoxalin-2(1H)-one (25b): Yellow oil, 41 mg, yield 95%; ¹H NMR (500 MHz, CDCl₃): 8.40 (br s, 1H), 6.98-7.01 (m, 1H), 6.83 (d, 1H, J = 8.0 Hz), 6.75-6.79 (m, 2H), 4.09-4.15 (m, 1H), 3.72 (s, 2H), 1.95-1.97 (m, 2H), 1.73-1.75 (m, 2H), 1.60-1.69 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 168.1, 136.2, 127.1, 124.2, 119.2, 115.7, 113.5, 58.4, 46.7, 27.8 (2C), 24.8 (2C). HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₇N₂O 217.1341, found 217.1334.

3-benzyl-4-(cyclopropylmethyl)-3,4-dihydroquinoxalin-2(1H)-one (26b): Yellow oil, 55 mg, yield 95%; ¹H NMR (500 MHz, CDCl₃): 8.71 (br s, 1H), 7.17- 7.23 (m, 3H), 7.12 (d, 2H, J = 7.1 Hz), 7.01 (t, 1H, J = 7.9 Hz), 6.72- 6.78 (m, 3H), 4.39 (t, 1H, J = 6.4 Hz), 3.22 (dd, 1H, $J_1 = 14.0$ Hz, $J_2 = 5.9$ Hz), 2.83- 2.88 (m, 2H), 2.56 (dd, 1H, $J_1 = 13.8$ Hz, $J_2 = 7.0$ Hz), 0.84-0.89 (m, 1H), 0.49 (dd, 2H, $J_1 = 20.0$ Hz, $J_2 = 8.2$ Hz), 0.08 (d, 2H, J = 4.6 Hz); ¹³C NMR (125 MHz, CDCl₃): 168.0, 136.4, 134.2,

129.7 (2C), 128.5 (2C), 126.8, 126.4, 124.3, 118.9, 115.5, 114.0, 63.1, 54.6, 36.2, 9.3, 5.0, 3.2. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₂₁N₂O 293.1654, found 293.1647.

3-(*benzo*[*d*][1,3]*dioxo*1-5-*y*1)-4-(3,4,5-*trifluorobenzy*1)-3,4-*dihydroquinoxa*1*in*-2(1*H*)-*one* (27*b*): Yellow oil, 74 mg, yield 90%; ¹H NMR (500 MHz, CDCl₃): 8.67 (br s, 1H), 6.89-6.96 (m, 3H), 6.80-6.81 (m, 2H), 6.71 (d, 1H, J = 7.6 Hz), 6.64-6.67 (m, 2H), 6.56 (d, 1H, J = 8.0 Hz), 5.91 (s, 2H), 4.86 (s, 1H), 4.51 (d, 1H, J = 16.0 Hz), 4.10 (d, 1H, J = 16.0 Hz); ¹³C NMR (125 MHz, CDCl₃): 166.5, 152.7 (ddd, $J_I = 251.0$ Hz, $J_I = 10.0$ Hz, $J_I = 3.9$ Hz), 148.4, 148.2, 140.2 (dt, $J_I = 251.3$ Hz, $J_2 = 15.2$ Hz), 133.3 (dd, $J_I = 6.4$ Hz, $J_2 = 2.3$ Hz), 133.2, 130.5, 125.4, 124.8, 121.0, 119.8, 115.9, 112.5, 111.3 (dd, $J_I = 16.5$ Hz, $J_2 = 5.1$ Hz), 108.7, 107.4, 101.4, 66.1, 51.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₆F₃N₂O₃ 413.1113, found 413.1107.

170 160 150 140 130 120 110 100 90 80 70 f1 (ppm)

Figure S4. ¹³C NMR spectrum of 1.

Figure S6. ¹³C NMR spectrum of 2.

Figure S8. ¹³C NMR spectrum of 3.

. 100 90 f1 (ppm)

.

Figure S12. ¹³C NMR spectrum of 5.

Figure S14. ¹³C NMR spectrum of 6.

Figure S15. ¹H NMR spectrum of 7.

Figure S18. ¹³C NMR spectrum of 8.

Figure S19. ¹H NMR spectrum of 9.

Figure S20. ¹³C NMR spectrum of 9.

Figure S22. ¹³C NMR spectrum of 10.

Figure S23. ¹H NMR spectrum of 11.

Figure S24. ¹³C NMR spectrum of 11.

Figure S26. ¹³C NMR spectrum of 12.

Figure S27. ¹H NMR spectrum of 13.

Figure S28. ¹³C NMR spectrum of 13.

Figure S30. ¹³C NMR spectrum of 14.

Figure S32. ¹³C NMR spectrum of 15.

Figure S34. ¹³C NMR spectrum of 16.

Figure S35. ¹H NMR spectrum of 17.

Figure S36. ¹³C NMR spectrum of 17.

Figure S38. ¹³C NMR spectrum of 18.

Figure S39. ¹H NMR spectrum of 19.

Figure S40. ¹³C NMR spectrum of 19.

Figure S42. ¹³C NMR spectrum of 20.

Figure S44. ¹³C NMR spectrum of 21.

Figure S45. ¹H NMR spectrum of 22.

Figure S46. ¹³C NMR spectrum of 22.

Figure S48. ¹³C NMR spectrum of 23.

Figure S50. ¹³C NMR spectrum of 24.

Figure S52. ¹³C NMR spectrum of 25.

Figure S54. ¹³C NMR spectrum of 26.

Figure S56. ¹³C NMR spectrum of 27.

¹⁹F NMR of the nitro substituted MCR compound 27

Figure S57. ¹⁹F NMR spectrum of 27.

Figure S58. ¹H NMR spectrum of 1a.

Figure S59. ¹³C NMR spectrum of 1a.

0

10

Figure S61. ¹³C NMR spectrum of 2a.

Figure S63. ¹³C NMR spectrum of 3a.

Figure S65. ¹³C NMR spectrum of 4a.

Figure S67. ¹³C NMR spectrum of 5a.

Figure S69. ¹³C NMR spectrum of 6a.

Figure S72. ¹H NMR spectrum of 8a.

Figure S73. ¹³C NMR spectrum of 8a.

Figure S75. ¹³C NMR spectrum of 9a.

Figure S76. ¹H NMR spectrum of 10a.

Figure S77. ¹³C NMR spectrum of 10a.

Figure S79. ¹³C NMR spectrum of 11a.

Figure S81. ¹³C NMR spectrum of 12a.

Figure S82. ¹H NMR spectrum of 13a.

*Ethyl acetate.

Figure S84. ¹H NMR spectrum of 14a.

Figure S85. ¹³C NMR spectrum of 14a.

Figure S87. ¹³C NMR spectrum of 15a.

Figure S89. ¹³C NMR spectrum of 16a.

Figure S91. ¹³C NMR spectrum of 17a.

Figure S92. ¹H NMR spectrum of 18a.

Figure S93. ¹³C NMR spectrum of 18a.

Figure S94. ¹H NMR spectrum of 19a.

Figure S95. ¹³C NMR spectrum of 19a.

Figure S97. ¹³C NMR spectrum of 20a.

Figure S99. ¹³C NMR spectrum of 21a.

Figure S100. ¹H NMR spectrum of 22a.

Figure S101. ¹³C NMR spectrum of 22a.

Figure S103. ¹³C NMR spectrum of 23a.

*: Small amount of the corresponding hydroquinoxalin-2(1*H*)-one derivative that is formed in situ.

Figure S104. ¹H NMR spectrum of 24a.

Figure S105. ¹³C NMR spectrum of 24a.

Figure S106. ¹H NMR spectrum of 25a.

Figure S107. ¹³C NMR spectrum of 25a.

Figure S108. ¹H NMR spectrum of 27a.

Figure S109. ¹³C NMR spectrum of 27a.

Figure S111. ¹³C NMR spectrum of 21b.

Figure S113. ¹³C NMR spectrum of 22b.

Figure S115. ¹³C NMR spectrum of 23b.

Figure S117. ¹³C NMR spectrum of 24b.

Figure S119. ¹³C NMR spectrum of 25b.

Figure S121. ¹³C NMR spectrum of 26b.

Figure S123. ¹³C NMR spectrum of 27b.