Supporting Information

Cobalt Phthalocyanine Sensitized Graphene-ZnO Composite: An Efficient NIR Active Photothermal Agent

Gururaj M. Neelgund[†] and Aderemi Oki*,[†]

[†]Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, United States

Figure S1 EDS of GR-ZnO

Figure S2 EDS of GR-ZnO-CoPc

Figure S3 Temperature variation found for aqueous dispersion of GR-ZnO and GR-ZnO-CoPc under exposure to 980 nm laser followed by its shut off.

Figure S4 The plot of time from cooling period versus negative natural logarithm of driving force temperature obtained for GR-ZnO and GR-ZnO-CoPc using the data shown in Figure S3.

Figure S5 Temperature variation measured for the aqueous dispersion of the GR-ZnO-CoPc for five cycles under irradiation by 980 nm laser.

Figure S6 XRD of GR-ZnO-CoPc recorded (a) before and (b) after using in five successive cycles of PTE measurement.

Figure S7 Photothermal effect of GR-ZnO-CoPc measured at different concentrations.

Figure S8 Photothermal effect of GR-ZnO-CoPc measured under illumination of 980 and 808 nm laser systems.