Supplementary Figures for

A composite of hyaluronic acid modified graphene oxide and iron oxide nanoparticles for targeted drug delivery and magneto-thermal therapy

Nilkamal Pramanik^{1,2}, Santhalakshmi Ranganathan², Sunaina Rao², Kaushik Suneet¹, Shilpee Jain¹, Annapoorni Rangarajan^{1,2}, Siddharth Jhunjhunwala^{1*}

1 – Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru - 560012
2 – Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru - 560012

*siddharth@iisc.ac.in

Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru - 560012

Contents

1.	Supplementary Figure 1	page S – 2
2.	Supplementary Figure 2	page S – 3
3.	Supplementary Figure 3	page S – 4
4.	Supplementary Figure 4	page S – 5
5.	Supplementary Figure 5	page S – 6
6.	Supplementary Figure 6	page S – 7
7.	Supplementary Figure 7	page S – 8

S – 1

Supplementary Figure 1: Transmission electron micrographs along with carbon and oxygen elemental mapping of GO and GO-HA. Larger particulates were imaged prior to sonication specifically to showcase that they contain many areas of high transparency suggesting low thickness of the majority of the prepared particulates.

Supplementary Figure 2: UV-visible spectroscopy (**Top**) and FTIR spectroscopy (**Bottom**) of doxorubicin (Dox) loaded nano-particulates.

Supplementary Figure 3: Fluorescence microscopy to determine uptake of GO and GO-HA by MDA-MB-231 cells. Fluorescein isothiocyanate (FITC) was grafted on to GO or GO-HA, incubated with MDA-MB-231 cells for 24 hours, and then cells were imaged. While some basal level of uptake is observed for GO (FITC grafted), the uptake of GO-HA was much more, which we suggest is due to the HA receptor (CD44) on MDA-MB-231 cells. This uptake data correlated with the killing efficacy of GO-HA-Dox when compared to GO-Dox (data shown in figure 6). Representative images are shown here.

Supplementary Figure 4: UV-visible spectroscopy (**Top**) and FTIR spectroscopy (**Bottom**) of paclitaxel (Ptx) loaded nano-particulates.

S – 5

Supplementary Figure 5: X-ray photoelectron spectroscopy of the composite along with elemental analysis, confirming iron oxide nanoparticle embedding on GO-HA

Peak	Position	Atomic Conc. %	Mass Conc. %
C1s	283	72.81	63.89
O1s	530	21.42	25.03
N1s	397	4.08	4.18
Fe2p	699	1.69	6.90

Supplementary Figure 6: A - VSM magnetic hysteresis analysis showing magnetic property of the composite system. B - Magnetic hyperthermia measurements showing that subjecting the composite system (at various concentrations) to magnetic fields results in an increase in temperature over time.

В

Kinetics of Temperature Change

Supplementary Figure 7: Raman spectroscopy to assess degradation of nano-particulates when cultured with RAW macrophage cells. A – analysis of GO before (a) and after (b – zoomed in) cell treatment. B – analysis of GO-HA before and after cell treatment

