Nitrogen-doped Graphene Oxide dotsbased "turn-off" H₂O₂, Au (III) and "turn off– on" Hg (II) sensors as Logic gates and Molecular Keypad Lock

Naveen Kumar Reddy Bogireddy, † Victor Barba, ‡ and Vivechana Agarwal^{†,} *

[†]Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México.

[‡]Centro de Investigaciones Químicas-IICBA. Universidad Autónoma Del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, C.P 62209, México.

[†]Corresponding author e-mail: <u>vagarwal@uaem.mx</u>

Figure S1. The XPS full survey scan of as-prepared NGODs

Figure S2. FTIR spectrum of as-prepared NGODs.

Figure S3. PL spectroscopy analysis of Ag⁺¹, Mn⁺², Mg⁺², and Zn⁺² using NGODs as probe (a) PL Intensity vs wavelength at $\lambda_{ex} = 344$ nm for different metal ions at 250 μ M concentration and (b) Corresponding normalized graph at $\lambda_{em} = 441$ nm.

Figure S4. Effect of variation in the order of addition of L-Cys and Hg⁺²: Time dependent PL (excitation wavelength = 344nm) response, taken after every 40 ± 10 seconds, at 3 different concentrations of L-Cys in (First Column) NGODs + L-Cys + Hg⁺² (a) 250 μ M, (c) 500 μ M and (e) 750 μ M; (Second Column) NGODs + Hg⁺² +L-Cys (b) 250 μ M, (d) 500 μ M and (f) 750 μ M complexes. The control sample (i.e. as prepared NGODs with L-Cysteine (L-Cys)) is shown for reference as 100% in each set of experiment and the concentration of Hg⁺² is kept fixed/constant at 250 μ M.

Figure S5. Effect of variation in the order of addition of L-AA and Hg⁺²: Time dependent PL (excitation wavelength = 344nm) response, taken after every 40 ± 10 seconds, at 3

different concentrations of L-AA in (First Column) NGODs + Hg^{+2} + L-AA (a) 750 μ M, (c) 500 μ M and (e) 250 μ M; (Second Column) NGODs +L-AA+ Hg^{+2} (b) 750 μ M, (d) 500 μ M and (f) 250 μ M complexes. The control sample (i.e. as prepared NGODs with L-Ascorbic acid (L-AA)) is shown for reference as 100% in each set of experiment and the concentration of Hg^{+2} is kept fixed/constant at 250 μ M.

Figure S6. Data analysis of Figure S3 and Figure S4 representing time taken in PL signal recovery and quenching during Hg⁺² detection: Reaction time vs concentration of L-Cys and L-AA (color of the word "immediate" represents the solution complex mentioned in the bar graph labels)

Figure S7. PL response of NGODs+Hg⁺² in different dilutions of citrus fruit juice (a) NGODs+ Hg⁺² + diluted lemon water (DLW) from Green lemon, (b) NGODs+ Hg⁺²+ Fanta lemon water (FLW), (c) NGODs+ Hg⁺²+ Mandarina orange (MOR), (d) NGODs+ Hg⁺²+ Tangerine orange (TOR) and (e) NGODs+ Hg⁺²+ Cotton candy grape (CCG).

Figure S8. Schematically represented outcome of similar works related to PL signal recovery using L-Cystine (Cys) and anion HS⁻

Figure S9. Schematically represented outcome of similar works related to PL signal recovery (quenching from Cr⁺⁶ and Fe⁺³) using L-Ascorbic acid

Figure S10. Optical response of NGODs from Hg^{+2} spiked real tap water collected from three different places (a) TW1 (google map view: 18.94926,-99.2709454), (b) TW2 (18.977705, - 99.247733) and (c) TW3 (18.9808869,-99.2401062) and (d) F/F₀ vs Hg^{+2} concentration, (F is PL intensity of NGODs-Hg⁺² complex at different concentrations of Hg⁺² and F₀ is NGODs PL intensity (fixed)).

Figure S11. Regained PL signal (%) from Hg (II) spiked tap water sample from 3 different locations (TW1, TW2 and TW3) at 3 different concentrations of L-Ascorbic acid.

Figure S12. NGODs-Hg⁺² complex is representing NOT gate (upper image) operations (where the presence (upper) and absence (lower) of Hg⁺² in NGODs' solution represents OFF (upper) and ON (lower) respectively in the executed circuit; the outputs were found to match with the experimental results). Red dots indicate TURN ON state and blue dots indicate TURN OFF state.

Figure S13. Simulations corresponding to figure 8a; (a) Input 1 is 1, input 2 is 0 and input 3 is 0 gives output 0 (turn off state), (b) Input 1 is 0, input 2 is 1 and input 3 is 0 gives output 1 (turn on state) (c) Input 1 is 1, input 2 is 0 and input 3 is 1 gives output 1 (turn on state), and (d) Input 1 is 0, input 2 is 1 and input 3 is 1 gives output 1 (turn on state). Red dots

indicate Turn ON state and blue dots indicates Turn OFF state. (Input $1 = Hg^{+2}$; Input 2 = Output of Input 1; Input 3 = L-Cys/L-AA); Red dots indicate TURN ON state and blue dots indicate TURN OFF state.

Figure S14. Simulations corresponding to figure 8e (D1=L-AA, D2=Hg⁺², D3=OFF, D4=L-AA and D5=ON)

Figure S15. Simulations corresponding to figure 9e: (a) Input 1 is 1, input 2 is 0 and input 3 is 0 then the output is 0 (turn off state), (b) Input 1 is 1, input 2 is 0 and input 3 is 1 then the output is 1 (turn on state) (c) Input 1 is 0, input 2 is 1 and input 3 is 0 then the output is 0 (turn on state), and (d) Input 1 is 0, input 2 is 1 and input 3 is 1 then the output is 1 (turn on state).

state).Red dots indicates Turn ON state and blue dots indicates Turn OFF state. (Input 1= Hg^{+2} ; Input 2 = Output of Input 1; Memory element initial = O(OFF); Input 3= L-Cys/L-AA)

Figure S16. Simulations corresponding to figure 9f; (a) Reset and (b) Set.