Supporting Information for

A novel Colorimetric Method for Simultaneous Detection and Identification of Multi-Metal Ions in Water: Sensitivity, Selectivity and Recognition Mechanism

Linfeng Chen[†], Xike Tian^{†,*}, Dasha Xia[‡], Yulun Nie[†], Liqiang Lu[†], Chao Yang[†] and Zhaoxin Zhou[†]

[†] Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China

[‡] School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Corresponding author: Xike Tian(<u>xktian@cug.edu.cn</u>)

Determination of association constant (Ka)

The association constant of the Tpy-QL and Tpy-BZ to metal ions were determined by the Benesi-Hildebrand analysis method. The UV-Vis spectra was recorded in 100% water solution in 10 mm cell and the absorption intensities of the probe meet the following formula:[1, 2]

$$\frac{1}{A - A_0} = \frac{1}{K_a (A_{max} - A_0) [M^{n+}]^x} + \frac{1}{A_{max} - A_0}$$

Where A_0 is the absorbance of free probe, A_{max} is the saturation absorbance of the Tpy-QL after adding metal ions, and A is the absorbance at different concentrations of metal ions (For Tpy-QL, absorbance intensity is obtained at 280 nm for Hg²⁺, 520 nm for Co²⁺, 607 nm for Fe²⁺, and 598 nm for Fe³⁺. For Tpy-BZ, absorbance intensity is obtained at 288 nm for Hg²⁺, 520 nm for Co²⁺, 637 nm for Fe²⁺, and 630 nm for Fe³⁺), K_a is the association constant, which is obtained by dividing the slope of the binding curve by the intercept.

Products characterization data

BZ: ¹H NMR (400 MHz, *d*₆-DMSO), δ (TMS, ppm): 8.48 (d, 1H), 8.36 (d, 1H), 7.92 (t, 1H), 7.83 (t, 1H), 4.80 (m, 2H), 3.32 (s, 3H) and 1.48 (t, 3H). HRMS (m/z) calcd for C₁₀H₁₂NS [M-I]⁺ 178.06788, found, 178.06891.

QL: ¹H NMR (400 MHz, *d*₆-DMSO), δ (TMS, ppm): 9.11 (d, 1H), 8.63 (d, 1H), 8.43 (d, 1H), 8.27 (d, 1H), 8.14 (d, 1H), 8.02 (d, 1H), 5.03 (m, 2H), 3.12 (s, 3H) and 1.56 (t, 3H). HRMS (m/z) calcd for C₁₂H₁₄N [M-I]⁺ 172.24688, found, 172.24639.

Tpy-BZ: ¹H NMR (400 MHz, *d*₆-DMSO), δ (TMS, ppm): 9.00 (s, 2H), 8.82 (d, 2H), 8.69 (d, 2H), 8.60 (m, 1H), 8.53 (d, 2H), 8.45 (m, 1H), 8.10 (m, 2H), 7.94 (m, 1H), 7.87 (m, 1H), 7.60 (m, 2H), 5.17 (m, 2H) and 1.55 (m, 3H). HRMS (m/z) calcd for C₂₆H₂₁N₄S [M-I]⁺ 421.14814, found, 421.14941.

Tpy-QL: ¹H NMR (400 MHz, *d*₆-DMSO), δ (TMS, ppm): 9.26 (d, 1H), 8.85 (s, 2H), 8.82 (t, 2H), 8.71 (t, 4H), 8.47 (d, 2H), 8.36 (d, 2H), 8.30 (m, 1H), 8.10 (m, 2H), 7.59 (m, 2H), 5.34 (m, 2H), 1.65 (t, 3H). HRMS (m/z) calcd for C₂₈H₂₃N₄ [M-I]⁺ 415.19172, found, 415.19194.

Figure S1. UV/Vis titrations spectra of Tpy-BZ (10 μ M) in water at pH 7.0 in the presence of various concentration of (a) Hg²⁺ (b) Fe²⁺ (c) Fe³⁺ (d) Co²⁺. The red line represents the spectrum of free Tpy-QL in water, blue line represents the spectrum after reaction saturation. The inset photographs were taken after the Tpy-BZ and metal ions were completely reacted.

Figure S2. The stability of (a)Tpy-QL and (b)Tpy-BZ in aqueous solution after the addition of 3 equiv. of metal ions. (pH =7.0, Ex: 370 nm).

Figure S3. Absorbance intensity of Tpy-QL (10 μ M) against the different concentrations of (a) Hg²⁺ (b) Co²⁺ (c)Fe²⁺ (d)Fe³⁺. Inset: the linear relationship between absorbance intensity and (a) Hg²⁺ (b) Co²⁺ (c) Fe²⁺ (d) Fe³⁺ concentration.

Figure S4. Absorbance intensity of Tpy-BZ (10 μ M) against the different concentrations of (a) Hg²⁺ (b) Co²⁺ (c)Fe³⁺ (d)Fe²⁺. Inset: the linear relationship between absorbance intensity and (a) Hg²⁺ (b) Co²⁺ (c)Fe³⁺ (d)Fe²⁺ concentration.

Figure S5. Job's plot of Tpy-QL with Hg^{2+} , Co^{2+} , Fe^{2+} and Fe^{3+} in 100% water solution (pH=7.0) (Total [Tpy-QL] + [metal ions] = 10 μ M).

Figure S6. The Benesi-Hildebrand plot of (a) Tpy-QL and (b) Tpy-BZ with Hg^{2+} , Co^{2+} , Fe^{2+} and Fe^{3+} . A₀ is the absorbance intensity of free probe and A is the absorbance intensity at different concentrations of metal ions.

Figure S7. Calculation of the area of UV absorption peaks at 488 nm (S_{488}) and at 598 nm (S_{598}). The S_{488} is calculated from 450 nm to 520 nm, and the S_{598} is calculated from 520 nm to 700 nm.

Figure S8. (up) Different observation view of DFT calculated optimization Tpy-QL-Fe²⁺ Tpy-QL-Co²⁺ and Tpy-QL-Fe³⁺ structure. (down) Corresponding electron density changes before and after the Tpy-QL reaction with metal ions. The color blue area indicates electron density decreases after the reaction, the purple area indicates electron density increase.

Colorimetric sensors for Co ²⁺	Detection limit/ppb
2-Aminothiophenol (ATP) and copper nitrate system[3]	2350
Ag nanoparticles[4]	0.58
Dithizone based colorimetric chemosensor[5]	2.32
Ag-Au bimetallic nanoparticles[6]	1.16
Sensitive ligand embedded nano-conjugate adsorbent[7]	0.19
Thiazole based ligands[8]	40
Chrysoidine G chemosensor[9]	100
Thiosulfate stabilized gold nanoparticles[10]	2.24
Tripodal amide ligand[11]	582
This work	0.34

Table S1 Comparison of the detection limits for Co²⁺ colorimetric sensors

Table S2 Comparison of the detection limits for Hg²⁺ colorimetric sensors

Colorimetric sensors for Hg ²⁺	Detection limit/ppb
Protein-functionalized gold nanoparticles.[12]	40
BSA-stabilized Pt nanozyme[13]	1.44
Chitosan-functionalized gold nanoparticles[14]	270
Label-free anisotropic nanogolds[15]	6
Hydrophilic cycloruthenated complex[16]	118
AIE-Based Chemodosimeter[17]	120
gold nanoparticles[18]	100
Colloidal Ag Nanocrystals[19]	40
Benzothiazole based colorimetric chemosensor[20]	102
Carbon nanodots as enzyme mimics[21]	4.6
Benzothiazole based colorimetric sensors[22]	80
Hg ²⁺ -modulated G-quadruplex-based DNAzymes[23]	10
Silver nanoparticles [24]	3.4
This work	6.51

Colorimetric sensors for Fe ²⁺	Detection limit/ppb	
Electrospun nanofiber based colorimetric probe[25]	102	
Dipicolylamine based sensor[26]	128	
Hydrazinyl-4-(trifluoromethyl)pyrimidine[27]	21.1	
Imidazole-based chemosensor[28]	17.9	
8-Hydroxyjulolidine-9-carboxaldehyde[29]	64.4	
Benzimidazole-based chemosensor[30]	66.1	
2,3-Dihydroxybenzaldehyde[31]	30.8	
TiO ₂ based screen-printed material[32]	300	
Schiff base based sensors based chemosensor [33]	7.84	
Luminescent molybdenum disulfide nanosheet[34]	0.39	
Sensor based on plasmonic response[35]	30.2	
This work	0.49	

Table S3 Comparison of the detection limits for Fe²⁺ colorimetric sensors

Table S4 Comparison of the detection limits for Fe³⁺ colorimetric sensors

Colorimetric sensors for Fe ³⁺	Detection limit/ppb
Imidazole-based chemosensor[28]	15.1
8-Hydroxyjulolidine-9-carboxaldehyde based sensor[29]	28.6
Benzimidazole-based chemosensor[30]	67.8
Anionic poly(3,4-propylenedioxythiophene) derivative[36]	1.29
2,3-Dihydroxybenzaldehyde-based chemosensor [31]	14.0
1,8-Naphthalimide chemosensor[37]	384.2
Functionalized silver nanoparticles[38]	356.1
Naphthalenediimide based colorimetric probe[39]	5.6
Catalytic oxidation of gold nanoparticles[40]	47.6
Phenol-based BODIPY chemosensor[41]	7.84
Pyrophosphate functionalized gold nanoparticles.[42]	313.6
This work	1.01

Table S5 The structural parameters of coordination bond in the complex of Tpy-QL- M^{n+}

Complex	Bond angle of N-M-N(°)	Bond lengths of N-M (Å)	Angle of two Tpy-QL (°)
Tpy-QL-Hg ²⁺	81.55	1.97	91.28
Tpy-QL-Fe ³⁺	80.78	1.99	91.48
Tpy-QL-Fe ²⁺	79.89	1.92	91.76
Tpy-QL-Co ²⁺	73.88	2.07	94.71

¹H NMR and HRMS data for obtained compounds

Figure S9. ¹H NMR of *N*-ethyl-2-methyl-benzothiazolium iodide in d_6 -DMSO.

Figure S13. HRMS (m/z) analysis of the *N*-ethyl-2-methyl-benzothiazolium (calcd for $C_{10}H_{12}NS$ [M-I]⁺ 178.06788, found, 178.06891).

Figure S14. HRMS (m/z) analysis of the *N*-ethyl-2-methyl-quinolinium (calcd for $C_{12}H_{14}N \text{ [M-I]}^+$ 172.24688, found, 172.24639).

Figure S15. HRMS (m/z) analysis of Tpy-BZ (calcd for $C_{26}H_{21}N_4S$ [M-I]⁺ 421.14814, found, 421.14941).

Figure S16. HRMS (m/z) analysis of the Tpy-QL (calcd for $C_{28}H_{23}N_4$ [M-I]⁺ 415.19172, found, 415.19194).

References

- I.D. Kuntz, F.P. Gasparro, M.D. Johnston, R.P. Taylor, Molecular interactions and the Benesi-Hildebrand Equation, J. Am. Chem. Soc. 1968, 90, 4778-4781.
- 2. H.A. Benesi, J.H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. **1949**, *71*, 2703-2707
- 3. Z. Liu, X. Jia, P. Bian, Z. Ma, A simple and novel system for colorimetric detection of cobalt ions, *Analyst* 2013, *139*, 585-588.
- T. Wu, Z. Ma, Colorimetric Detection of Cobalt or Nickel Ions Based on the Change of the Catalytic Performance of Leached Ag Nanoparticles, *J. Nanosci. Nanotechno.* 2017, 17, 4297-4303.
- 5. H. Tavallali, G. Deilamy-Rad, A. Parhami, S.Z. Mousavi, A novel development of dithizone as a dual-analyte colorimetric chemosensor: Detection and determination of cyanide and cobalt(II) ions in dimethyl sulfoxide/water media with biological applications, *J Photochem. Photobiol. B* 2013, *125*, 121-130.
- D. Xu, H. Chen, Q. Lin, Z. Li, T. Yang, Z. Yuan, Selective and sensitive colorimetric determination of cobalt ions using Ag-Au bimetallic nanoparticles, *RSC Adv.* 2017, *7*, 16295-16301.
- M.R. Awual, T. Yaita, H. Shiwaku, S. Suzuki, A sensitive ligand embedded nano-conjugate adsorbent for effective cobalt(II) ions capturing from contaminated water, *Chem. Eng. J.* 2015, 276, 1-10.
- D. Singhal, A.K. Singh, A. Upadhyay, Highly selective potentiometric and colorimetric determinations of cobalt (II) ion using thiazole based ligands, *Mat. Sci. Eng. C-Mater.* 2014, 45, 216-224.
- S.M. Kang, S.C. Jang, G.Y. Kim, C.S. Lee, S.H. Yun, C. Roh, A Rapid In Situ Colorimetric Assay for Cobalt Detection by the Naked Eye, *Sensors* 2016, *16*, 626.
- Z. Zhang, J. Zhang, T. Lou, D. Pan, L. Chen, C. Qu, Z. Chen, Label-free colorimetric sensing of cobalt(II) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine, *Analyst* 2011, *137*, 400-405.
- Z. JR, L. DP, H. Y, K. XJ, Z. ZM, R. YP, L. LS, H. RB, Z. LS, A highly selective colorimetric chemosensor for cobalt(II) ions based on a tripodal amide ligand, *Dalton T.* 2014, 43, 11579-11586.
- 12. Y. Guo, Z. Wang, W. Qu, H. Shao, X. Jiang, Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles, *Biosens. Bioelectron.* 2011, *26*, 4064-4069.
- 13. W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, Y. Fu, BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions, *Biosens. Bioelectron.* **2015**, *66*, 251-258.
- Z. Chen, C. Zhang, Y. Tan, T. Zhou, H. Ma, C. Wan, Y. Lin, K. Li, Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation, *Microchim. Acta* 2015, *182*, 611-616.
- 15. L.H. Jin, C.S. Han, Eco-friendly colorimetric detection of mercury(II) ions using label-free anisotropic nanogolds in ascorbic acid solution, *Sens. Actuators, B* 2014, *195*, 239-245.
- 16. X. Li, X. Su, Z. Shi, X. Cheng, S. Liu, Q. Zhao, Highly selective and reversible colorimetric detection of mercury ions by a hydrophilic cycloruthenated complex in water, *Sens. Actuators, B* **2014**, *201*, 343-350.
- A. Chatterjee, M. Banerjee, D.G. Khandare, R.U. Gawas, S.C. Mascarenhas, A. Ganguly, R. Gupta, H. Joshi, Aggregation-Induced Emission-Based Chemodosimeter Approach for Selective Sensing and Imaging of Hg(II) and Methylmercury Species, *Anal. Chem.* 2017, *89*, 12698-12704.
- N. Kanayama, T. Takarada, M. Maeda, Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles, *Chem. Commun.* 2011, 47, 2077-2079.

- S. Liu, H. Yang, X. Zhao, Y. Ren, D. Li, L. Zhang, R. Xing, Microwave-Assisted Synthesis of Colloidal Ag Nanocrystals and Colorimetric Detection of Mercury (I and II) Ions in Aqueous Solution, *J. Nanosci. Nanotechno.* 2016, 16, 12326-12331.
- 20. B.K. Momidi, V. Tekuri, D.R. Trivedi, Selective detection of mercury ions using benzothiazole based colorimetric chemosensor, Inorganic *Chem. Commun.* 2016, 74, 1-5.
- Z. Mohammadpour, A. Safavi, M. Shamsipur, A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics, *Chem. Eng. J.* 2014, 255, 1-7.
- 22. A.K. Mahapatra, R. Maji, P. Sahoo, P.K. Nandi, S.K. Mukhopadhyay, A. Banik, A new colorimetric chemodosimeter for mercury ion via specific thioacetal deprotection in aqueous solution and living cells, *Tetrahedron Lett.* **2012**, *53*, 7031-7035.
- T. Li, S. Dong, E. Wang, Label-free colorimetric detection of aqueous mercury ion Hg²⁺ using Hg²⁺-modulated G-quadruplex-based DNAzymes, *Anal. Chem.* 2009, *81*, 2144.
- 24. Y. Wang, F. Yang, X. Yang, Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides, *ACS Appl. Mater. Inter.* **2010**, 2, 339.
- D.A. Ondigo, Z.R. Tshentu, N. Torto, Electrospun nanofiber based colorimetric probe for rapid detection of Fe2+ in water, *Anal. Chim. Acta* 2013, 804, 228-234.
- 26. H. Kim, Y.J. Na, E.J. Song, K.B. Kim, J.M. Bae, C. Kim, A single colorimetric sensor for multiple target ions: the simultaneous detection of Fe²⁺ and Cu²⁺ in aqueous media, *RSC Adv.* 2014, *4*, 22463-22469.
- 27. J.M. Jung, S.Y. Lee, C. Kim, A novel colorimetric chemosensor for multiple target metal ions Fe²⁺, Co²⁺ and Cu²⁺ in a near-perfect aqueous solution: Experimental and theoretical studies, *Sens. Actuators, B* 2017, 251, 291-301.
- 28. T.G. Jo, K.H. Bok, J. Han, H.L. Mi, C. Kim, Colorimetric detection of Fe³⁺ and Fe²⁺ and sequential fluorescent detection of Al³⁺ and pyrophosphate by an imidazole-based chemosensor in a near-perfect aqueous solution, *Dyes Pigments* **2017**, *139*, 136-147.
- 29. H. Jung, H. Mi, highly selective colorimetric chemosensor for sequential detection of Fe³⁺ and pyrophosphate in aqueous solution, *Tetrahedron* **2017**, *73*, 6624-6631.
- S.K. Yong, J.J. Lee, Y.L. Sun, T.G. Jo, C. Kim, A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorometric detection of Zn(II) in aqueous media, *RSC Adv.* 2016, *6*, 61505-61515
- 31. S.Y. Kim, S.Y. Lee, H.K. Ji, S.K. Min, A. Kim, C. Kim, Colorimetric detection of Fe^{3+/2+} and fluorescent detection of Al³⁺ in aqueous media: applications and DFT calculations, *J. Coord. Chem.* **2018**, *6*, 1-21.
- 32. N.O. Laschuk, I.I. Ebralidze, S. Quaranta, S.T.W. Kerr, J.G. Egan, S. Gillis, F. Gaspari, A. Latini, O.V. Zenkina, Rational design of a material for rapid colorimetric Fe²⁺ detection, *Mater. Design.* 2016, 107, 18-25.
- 33. K.B. Kim, G.J. Park, H. Kim, E.J. Song, J.M. Bae, C. Kim, A novel colorimetric chemosensor for multiple target ions in aqueous solution: simultaneous detection of Mn(II) and Fe(II), *Inorg. Chem. Commun.* 2014, 46, 237-240.
- 34. Y. Wang, J. Hu, Q. Zhuang, Y. Ni, Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics, *Biosens. Bioelectron.* 2016, 80, 111-117.
- 35. S. Basiri, A. Mehdinia, A. Jabbari, A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe 2+, hydrogen peroxide, and glucose, *Colloid*.

Surface. A 2018, 545, 138-146.

- X. Chen, Q. Zhao, W. Zou, Q. Qu, F. Wang, A colorimetric Fe³⁺ sensor based on an anionic poly(3,4-propylenedioxythiophene) derivative, *Sens. Actuators, B* 2017, 244, 891-896.
- 37. Z. Zhang, S. Lu, C. Sha, D. Xu, A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions: Fe³⁺, Pb²⁺ and Hg²⁺, *Sens. Actuators, B* **2015**, *208*, 258-266.
- 38. S. Bothra, J.N. Solanki, S.K. Sahoo, J.F. Callan, Anion-driven selective colorimetric detection of Hg²⁺ and Fe³⁺ using functionalized silver nanoparticles, *RSC Adv.* **2013**, *4*, 1341-1346.
- N.V. Ghule, R.S. Bhosale, A.L. Puyad, S.V. Bhosale, S.V. Bhosale, Naphthalenediimide amphiphile based colorimetric probe for recognition of Cu²⁺ and Fe³⁺ ions, *Sens. Actuators, B* 2016, 227, 17-23.
- 40. J. Li, X. Wang, D. Huo, C. Hou, H. Fa, M. Yang, L. Zhang, Colorimetric measurement of Fe³⁺ using a functional paper-based sensor based on catalytic oxidation of gold nanoparticles, *Sens. Actuators, B* **2017**, *242*, 1265-1271.
- 41. L. Wang, G. Fang, D. Cao, A novel phenol-based BODIPY chemosensor for selective detection Fe³⁺ with colorimetric and fluorometric dual-mode, *Sens. Actuators, B* **2015**, *207*, 849-857.
- 42. S. Wu, Y. Chen, Y. Sung, Colorimetric detection of Fe³⁺ ions using pyrophosphate functionalized gold nanoparticles, *Analyst* **2011**, *136*, 1887-1891.