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Determination of association constant (Ka) 

The association constant of the Tpy-QL and Tpy-BZ to metal ions were determined by the 

Benesi-Hildebrand analysis method. The UV-Vis spectra was recorded in 100% water solution 

in 10 mm cell and the absorption intensities of the probe meet the following formula:[1, 2] 

1

A − A0
=

1

Ka(Amax − A0)[Mn+]x
+

1

Amax − A0
 

Where A0 is the absorbance of free probe, Amax is the saturation absorbance of the Tpy-

QL after adding metal ions, and A is the absorbance at different concentrations of metal ions 

(For Tpy-QL, absorbance intensity is obtained at 280 nm for Hg2+, 520 nm for Co2+, 607 nm 

for Fe2+, and 598 nm for Fe3+. For Tpy-BZ, absorbance intensity is obtained at 288 nm for Hg2+, 

520 nm for Co2+, 637 nm for Fe2+, and 630 nm for Fe3+), Ka is the association constant, which 

is obtained by dividing the slope of the binding curve by the intercept. 

 

 

Products characterization data 
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BZ: 1H NMR (400 MHz, d6-DMSO), δ (TMS, ppm): 8.48 (d, 1H), 8.36 (d, 1H), 7.92 (t, 1H), 

7.83 (t, 1H), 4.80 (m, 2H), 3.32 (s, 3H) and 1.48 (t, 3H). HRMS (m/z) calcd for C10H12NS [M-I]+ 

178.06788, found, 178.06891.  

QL: 1H NMR (400 MHz, d6-DMSO), δ (TMS, ppm): 9.11 (d, 1H), 8.63 (d, 1H), 8.43 (d, 1H), 

8.27 (d, 1H), 8.14 (d, 1H), 8.02 (d, 1H), 5.03 (m, 2H), 3.12 (s, 3H) and 1.56 (t, 3H). HRMS (m/z) 

calcd for C12H14N [M-I]+ 172.24688, found, 172.24639.  

Tpy-BZ: 1H NMR (400 MHz, d6-DMSO), δ (TMS, ppm): 9.00 (s, 2H), 8.82 (d, 2H), 8.69 (d, 

2H), 8.60 (m, 1H), 8.53 (d, 2H), 8.45 (m, 1H), 8.10 (m, 2H), 7.94 (m, 1H), 7.87 (m, 1H), 7.60 (m, 

2H), 5.17 (m, 2H) and 1.55 (m, 3H). HRMS (m/z) calcd for C26H21N4S [M-I]+ 421.14814, found, 

421.14941. 

Tpy-QL: 1H NMR (400 MHz, d6-DMSO), δ (TMS, ppm): 9.26 (d, 1H), 8.85 (s, 2H), 8.82 (t, 

2H), 8.71 (t, 4H), 8.47 (d, 2H), 8.36 (d, 2H), 8.30 (m, 1H), 8.10 (m, 2H), 7.59 (m, 2H), 5.34 (m, 

2H), 1.65 (t, 3H). HRMS (m/z) calcd for C28H23N4 [M-I]+ 415.19172, found, 415.19194.  

 

 

Figure S1. UV/Vis titrations spectra of Tpy-BZ (10 μM) in water at pH 7.0 in the presence 

of various concentration of (a) Hg2+ (b) Fe2+ (c) Fe3+ (d) Co2+. The red line represents the 

spectrum of free Tpy-QL in water, blue line represents the spectrum after reaction saturation. 

The inset photographs were taken after the Tpy-BZ and metal ions were completely reacted. 
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Figure S2. The stability of (a)Tpy-QL and (b)Tpy-BZ in aqueous solution after the addition of 

3 equiv. of metal ions. (pH =7.0, Ex: 370 nm).  

 

 

 

 

 

Figure S3. Absorbance intensity of Tpy-QL (10 μM) against the different concentrations 

of (a) Hg2+ (b) Co2+ (c)Fe2+ (d)Fe3+. Inset: the linear relationship between absorbance intensity 

and (a) Hg2+ (b) Co2+ (c) Fe2+ (d) Fe3+ concentration. 
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Figure S4. Absorbance intensity of Tpy-BZ (10 μM) against the different concentrations 

of (a) Hg2+ (b) Co2+ (c)Fe3+ (d)Fe2+. Inset: the linear relationship between absorbance intensity 

and (a) Hg2+ (b) Co2+ (c)Fe3+ (d)Fe2+ concentration. 

 

 

 

 

Figure S5. Job's plot of Tpy-QL with Hg2+, Co2+, Fe2+ and Fe3+ in 100% water solution 

(pH=7.0) (Total [Tpy-QL] + [metal ions] = 10 μM). 
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Figure S6. The Benesi-Hildebrand plot of (a) Tpy-QL and (b) Tpy-BZ with Hg2+, Co2+, 

Fe2+ and Fe3+. A0 is the absorbance intensity of free probe and A is the absorbance intensity at 

different concentrations of metal ions. 

 

 

Figure S7. Calculation of the area of UV absorption peaks at 488 nm (S488) and at 598 nm 

(S598). The S488 is calculated from 450 nm to 520 nm, and the S598 is calculated from 520 nm to 

700 nm. 
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Figure S8. (up) Different observation view of DFT calculated optimization Tpy-QL-Fe2+ 

Tpy-QL-Co2+ and Tpy-QL-Fe3+ structure. (down) Corresponding electron density changes 

before and after the Tpy-QL reaction with metal ions. The color blue area indicates electron 

density decreases after the reaction, the purple area indicates electron density increase. 
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Table S1 Comparison of the detection limits for Co2+ colorimetric sensors 

Colorimetric sensors for Co2+ Detection limit/ppb 

2-Aminothiophenol (ATP) and copper nitrate system[3] 2350 

Ag nanoparticles[4] 0.58 

Dithizone based colorimetric chemosensor[5] 2.32 

Ag-Au bimetallic nanoparticles[6] 1.16 

Sensitive ligand embedded nano-conjugate adsorbent[7] 0.19 

Thiazole based ligands[8] 40 

Chrysoidine G chemosensor[9] 100 

Thiosulfate stabilized gold nanoparticles[10] 2.24 

Tripodal amide ligand[11] 582 

This work 0.34 

 

 

Table S2 Comparison of the detection limits for Hg2+ colorimetric sensors 

Colorimetric sensors for Hg2+ Detection limit/ppb 

Protein-functionalized gold nanoparticles.[12] 40 

BSA-stabilized Pt nanozyme[13] 1.44 

Chitosan-functionalized gold nanoparticles[14] 270 

Label-free anisotropic nanogolds[15] 6  

Hydrophilic cycloruthenated complex[16] 118  

AIE-Based Chemodosimeter[17] 120 

gold nanoparticles[18] 100 

Colloidal Ag Nanocrystals[19] 40 

Benzothiazole based colorimetric chemosensor[20] 102 

Carbon nanodots as enzyme mimics[21] 4.6 

Benzothiazole based colorimetric sensors[22] 80 

Hg2+-modulated G-quadruplex-based DNAzymes[23] 10 

Silver nanoparticles [24] 3.4 

This work 6.51 
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Table S3 Comparison of the detection limits for Fe2+ colorimetric sensors 

Colorimetric sensors for Fe2+ Detection limit/ppb 

Electrospun nanofiber based colorimetric probe[25] 102  

Dipicolylamine based sensor[26] 128 

Hydrazinyl-4-(trifluoromethyl)pyrimidine[27] 21.1 

Imidazole-based chemosensor[28] 17.9 

8-Hydroxyjulolidine-9-carboxaldehyde[29] 64.4 

Benzimidazole-based chemosensor[30] 66.1 

2,3-Dihydroxybenzaldehyde[31] 30.8 

TiO2 based screen-printed material[32] 300 

Schiff base based sensors based chemosensor [33] 7.84 

Luminescent molybdenum disulfide nanosheet[34] 0.39 

Sensor based on plasmonic response[35] 30.2 

This work 0.49 

 

Table S4 Comparison of the detection limits for Fe3+ colorimetric sensors 

Colorimetric sensors for Fe3+ Detection limit/ppb 

Imidazole-based chemosensor[28] 15.1 

8-Hydroxyjulolidine-9-carboxaldehyde based sensor[29] 28.6 

Benzimidazole-based chemosensor[30] 67.8 

Anionic poly(3,4-propylenedioxythiophene) derivative[36] 1.29 

2,3-Dihydroxybenzaldehyde-based chemosensor [31] 14.0 

1,8-Naphthalimide chemosensor[37] 384.2 

Functionalized silver nanoparticles[38] 356.1 

Naphthalenediimide based colorimetric probe[39] 5.6 

Catalytic oxidation of gold nanoparticles[40] 47.6 

Phenol-based BODIPY chemosensor[41] 7.84 

Pyrophosphate functionalized gold nanoparticles.[42] 313.6 

This work 1.01 

 

Table S5 The structural parameters of coordination bond in the complex of Tpy-QL-Mn+ 

Complex 
Bond angle of 

N-M-N(°) 

Bond lengths of 

N-M (Å) 

Angle of two 

Tpy-QL (°) 

Tpy-QL-Hg2+ 81.55 1.97 91.28 

Tpy-QL-Fe3+ 80.78 1.99 91.48 

Tpy-QL-Fe2+ 79.89 1.92 91.76 

Tpy-QL-Co2+ 73.88 2.07 94.71 
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1H NMR and HRMS data for obtained compounds 
 

 

 

Figure S9. 1H NMR of N-ethyl-2-methyl-benzothiazolium iodide in d6-DMSO. 

 

 

 

 

 

Figure S10. 1H NMR of N-ethyl-2-methyl-quinolinium iodide in d6-DMSO. 
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Figure S11. 1H NMR of Tpy-BZ in d6-DMSO. 

 

 

 

 

 

Figure S12. 1H NMR of Tpy-QL in d6-DMSO. 
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Figure S13. HRMS (m/z) analysis of the N-ethyl-2-methyl-benzothiazolium (calcd for 

C10H12NS [M-I]+ 178.06788, found, 178.06891). 

 

 

 

Figure S14. HRMS (m/z) analysis of the N-ethyl-2-methyl-quinolinium (calcd for 

C12H14N [M-I]+ 172.24688, found, 172.24639). 

 

 

 

 

 

 



S12 
 
 

 

Figure S15. HRMS (m/z) analysis of Tpy-BZ (calcd for C26H21N4S [M-I]+ 421.14814, 

found, 421.14941). 

 

 

 

 

Figure S16. HRMS (m/z) analysis of the Tpy-QL (calcd for C28H23N4 [M-I]+ 

415.19172, found, 415.19194). 
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