Enhanced NO₂ sensing at room temperature with graphene via monodisperse polystyrene bead decoration

Haifeng Fei[†], Gang Wu[‡], Wei-Ying Cheng^I, Wenjie Yan[†], Hongjun Xu[†], Duan Zhang[⊤], Yanfeng Zhao[†], Yanhui Lv[†], Yanhui Chen, [⊥]Lei Zhang[§], Cormac Ó Coileáin[†], Chenglin Heng[†], Ching-Ray Chang^{#, *}, Han-Chun Wu^{†, *}

[†]School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
[‡]School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P.
R. China

^IGraduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan ^TElementary Educational College, Beijing key Laboratory for Nano-Photonics and Nano-Structure, Capital Normal University, Beijing 100048, P. R. China

[⊥]Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China

[§]School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,

P. R. China

[#]Department of Physics, National Taiwan University, Taipei 106, Taiwan

Figure S1. (a) Optical image and (b) corresponding Raman spectra of graphene on Si substrate with a 300 nm SiO_2 .

Figure S2. Magnified gas sensing dynamics under each gas concentration in Fig. 3b.

Figure S3. Dynamic-sensing response of the graphene sensor after PS bead drop coating measured under 635 nm photo-illumination.

Figure S4. Multi-cycle responses of sensor when exposed to 8800 ppb NO₂.

Figure S5. Low magnification SEM images for Figure 4b and the areas 1-4 with different PS bead distribution are clearly marked.

Figure S6. Typical photographic image of a device.

Figure S7. Adsorption time as a function of gas concentration for a variety PS coverage

concentration illumination conditions.

Figure S8. Dynamic-sensing response of four graphene sensors with different PS concentrations measured in darkness against 250 ppb NO₂, where, 1, 2, 3, and 4 denote devices without PS (1), with few PS beads (2), with a monolayer PS beads (3), and with multilayers PS beads (4), respectively.

Figure S9. (a) Simulated the electric field of NO₂ molecular on top of graphene, the total electric field of NO₂ molecular equal to the dipole field of NO₂ molecular E_{NO_2} plus the image field of the Graphene/SiO₂ substance E_{sub} . (b) Simulated electric field potentials of NO₂ molecular near the Graphene/PS beads interface, the enhanced electric field of NO₂ molecular due to the image field of PS sphere E_{PS} . (c) Simulated electric field potentials of NO₂ molecular absorbed into the concave of Graphene and PS beads, the effect of E_{PS} is more obvious than (b).