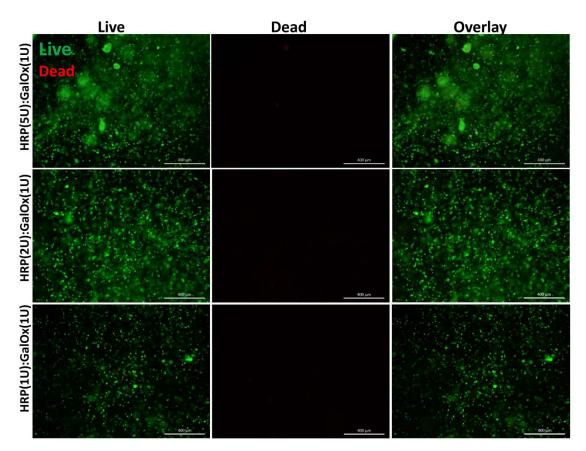
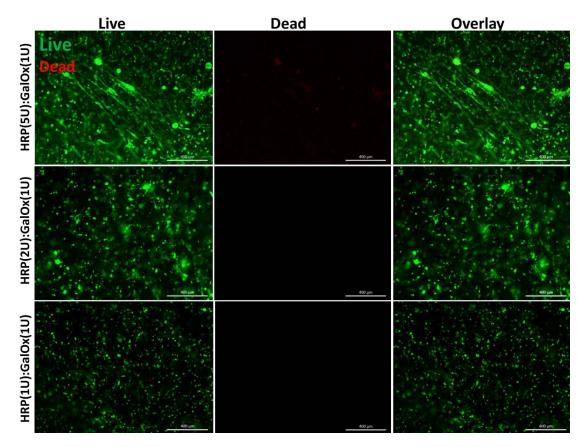
Supporting Information

New BMSC-laden gelatin hydrogel *in situ* forming by dual-enzymatic cross-linking accelerates dermal wound healing


Minghao Yao,^{†§*} Junni Zhang,^{†§} Feng Gao,[†] Yihao Chen,[†] Shanshan Ma,[†] Kun Zhang,[†] Hongtao Liu, [†] and Fangxia Guan^{†*}

[†]School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China


3D culture of BMSC within GH hydrogel

BMSC were suspended in the 8% GH solution containing HRP (1, 2, 5 U/ml) and d-galactose (50 mM) at a concentration of 1×10^6 cells per ml. Then GalOx (1 U/ml) were added to the GH/HRP/d-galactose/BMSC solution to induce gelation at 37 °C for 10 min. The BMSC-loaded GH hydrogels were cultured using fresh DMEM/F12 complete medium (with 10% fetal bovine serum) at 37 °C in a humidified atmosphere containing 95% air and 5% CO₂.

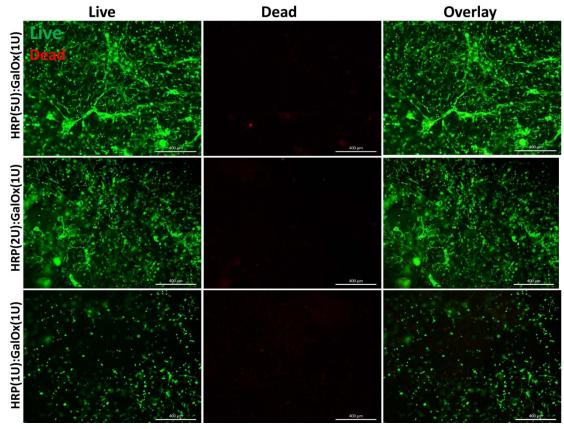

After culturing for 1, 3 and 7 days, the BMSC-loaded hydrogels were stained with cell Live-Dead kit (Calcein-AM/PI) at 37 °C for 10 min, and then observed using fluorescence microscopy (Leica DFC7000T, Germany).

Figure S1 Live/Dead staining and viability ratio results of BMSC loaded in the hydrogels of HRP(5U): GalOx(1U), HRP(2U): GalOx(1U), and HRP(1U): GalOx(1U) after culturing for 1 day. Scale bar is 400 µm.

Figure S2 Live/Dead staining and viability ratio results of BMSC loaded in the hydrogels of HRP(5U): GalOx(1U), HRP(2U): GalOx(1U), and HRP(1U): GalOx(1U) after culturing for 3 days. Scale bar is 400 μm.

Figure S3 Live/Dead staining and viability ratio results of BMSC loaded in the hydrogels of HRP(5U): GalOx(1U), HRP(2U): GalOx(1U), and HRP(1U): GalOx(1U) after culturing for 7 days. Scale bar is 400 μ m.

Notes and references

- Lee, S. H.; Lee, Y.; Chun, Y. W.; Crowder, S. W.; Young, P. P.; Park, K. D.; Sung, H. J. In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of Mesenchymal Stem Cells. *Adv Funct Mater* 2014, 24 (43), 6771.
- Lee, Y.; Bae, J. W.; Oh, D. H.; Park, K. M.; Chun, Y. W.; Sung, H.-J.; Park, K. D. In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. *Journal of Materials Chemistry B* 2013, 1 (18), 2407.
- Lee, Y.; Son, J. Y.; Kang, J. I.; Park, K. M.; Park, K. D. Hydrogen Peroxide-Releasing Hydrogels for Enhanced Endothelial Cell Activities and Neovascularization. ACS Appl Mater Interfaces 2018, 10 (21), 18372.