144 PLANALP ET AL.

APPENDIX A

DATA FORMATTING EXAMPLES

1. Long data format, used in separate MLM analyses; the file name is separatelong.

id = family or dyad indicator

mage = infant age in months at each mother-child lab visit

fage = infant age in months at each father-child lab visit

mms = mother outcome (marital satisfaction score)

fms = father outcome (marital satisfaction score)

id	mage	fage	mms	fms
2	3	3	86.745	90.000
2	5	5	96.000	104.000
2	7	7	104.000	123.317
2	12	14	107.000	117.000
2	20	20	119.000	125.000
3	3	3	130.000	140.000
3	5	5	139.000	119.463
3	7	7	117.000	145.000
3	12	14	135.000	134.000
3	20	20	130.000	127.000

2. Long data format, used in simultaneous MLM analyses; the file name is bothlong

id = family or dyad indicator

age = infant age in months at each mother-child or father-child lab visit

wave = measurement occasion (1-5)

role = parent role (1 = mother, 0 = father)

mom = dummy coded for mother versus father report (1 = mother, 0 = father)

ms = outcome (marital satisfaction score)

id	age	wave	role	тот	ms
2	3	1	1	1	86.745
2	5	2	1	1	96.000
2	7	3	1	1	104.000
2	12	4	1	1	107.000
2	20	5	1	1	119.000
2	3	1	0	0	90.000
2	5	2	0	0	104.000
2	7	3	0	0	123.317
2	14	4	0	0	117.000
2	20	5	0	0	125.000
3	3	1	1	1	130.000
3	5	2	1	1	139.000
3	7	3	1	1	117.000
3	12	4	1	1	135.000
3	20	5	1	1	130.000
3	3	1	0	0	140.000
3	5	2	0	0	119.463
3	7	3	0	0	145.000
3	14	4	0	0	134.000
3	20	5	0	0	127.000

 Wide data format, used in all SEM analyses id = family/dyad identifier MMS = mother report of marital satisfaction FMS = father report of marital satisfaction

id	MMS1	MMS2	MMS3	MMS4	MMS5	FMS1	FMS2	FMS3	FMS4	FMS5
2	86.75	96.00	104.00	107.00	119.00	90.00	104.00	123.32	117.00	125.00
3	130.00	139.00	117.00	135.00	130.00	140.00	119.46	145.00	134.00	127.00

APPENDIX B

```
SAS AND MPLUS SYNTAX
```

A. SAS Code

Center AND SCALE THE AGE VARIABLE
*for 'separatelong'
cmage = mage/12;
cfage = fage/12;
*for 'bothlong'
cage = age/12;
ICC CALCULATIONS (=intercept variance/[intercept variance + level-1 residual variance])
(1) ICC for mothers' data over time;
proc mixed covtest data = separatelong method = reml;
class id;
model $mms = /s covb;$
random int /type = un subject = id;
run;
(2) ICC for fathers' data over time;
proc mixed covtest data = separatelong method = reml;
class id;
model fms = $/s \operatorname{covb}$;
random int /type = un subject = id;
run;
(3) ICC for measuring the nonindependence between mothers and fathers at wave $t = 1, 2,, or T$;
proc mixed covtest data = bothlong method = reml;
where wave = 1; * need to change 1 to t for wave t;
class id;
model $ms = /s$ covb;
random int /type = un subject = id;
run;
SEPARATE ANALYSES (MOTHER)
proc mixed covtest data = separatelong method = ml;
class id;
model mms = cmage /s covb;
random int cmage /type = un subject = id;
run:
SEPARATE ANALYSES (FATHER)
proc mixed covtest data = separatelong method = ml;
class id;
model fms = cfage /s covb;
random int cfage /type = un subject = id;
run;
Center AND SCALE THE AGE VARIABLE
cage = age/12;
SIMULTANEOUS "DEFAULT" METHOD
proc mixed covtest data = bothlong method = ml;
class id;
model ms = cage mom mom *cage /s covb;
random int cage mom mom *cage /type = un subject = id;
run;
,

(Continued)

SIMULTANEOUS "DEPENDENT" METHOD

proc mixed covtest data = bothlong method = ml;

class id role wave;

model ms = cage mom mom*cage /s covb;

random int cage mom mom*cage /type = un subject = id;

repeated role/type = CSH subject = id*wave; * the role and wave variables are used for specifying the "dependent" error covariance structure; run;

B. SEM Mplus Code

For our example, we have MT1 = 3/12, MT2 = 5/12, MT3 = 7/12, MT4 = 12/12, and MT5 = 20/12 for mothers. For fathers, we have FT1 = 3/12, FT2 = 5/12, FT3 = 7/12, FT4 = 14/12, and FT5 = 20/12

SEPARATE ANALYSES (MOTHER) level slope |MMS1@MT1 MMS2@MT2 MMS3@MT3 MMS4@MT4 MMS5@MT5; !means set to zero [MMS1@0]; [MMS2@0]; [MMS3@0]; [MMS4@0]; [MMS5@0]; !residual variances constrained to be equal MMS1 MMS2 MMS3 MMS4 MMS5 (1); !estimate means and variances of intercept and slope [level slope]; level slope; SEPARATE ANALYSES (FATHER) level slope |FMS1@FT1 FMS2@FT2 FMS3@FT3 FMS4@FT4 FMS5@FT5; !means set to zero [FMS1@0]; [FMS2@0]; [FMS3@0]; [FMS4@0]; [FMS5@0]; !residual variances constrained to be equal FMS1 FMS2 FMS3 FMS4 FMS5 (1); !estimate means and variances of intercept and slope [level slope]; level slope; SIMULTANEOUS "DEFAULT" METHOD M level M slope |MMS1@MT1 MMS 2@MT2 MMS 3@MT3 MMS4@MT4 MMS5@MT5; F_level F_slope |FMS1@FT1 FMS2@FT2 FMS3@FT3 FMS4@FT4 FMS5@FT5; !means set to zero [MMS1@0]; [MMS2@0]; [MMS3@0]; [MMS4@0]; [MMS4@0]; [FMS1@0]; [FMS2@0]; [FMS3@0]; [FMS4@0]; [FMS5@0]; !residual variances constrained to be equal MMS1 MMS2 MMS3 MMS4 MMS5 (1); FMS1 FMS2 FMS3 FMS4 FMS5 (1); !create difference score between M level and F level, M slope and F slope !to mimic the MLM specification Diff_level by M_level@1; M_level on F_level@1; Diff slope by M slope@1; M slope on F slope@1; !set means and variances of m_level and m_slope to zero [M_level@0 M_slope@0]; M_level@0 M_slope@0; !estimate means of Father intercept and slope [F level F slope]; !estimate means of the difference variables [Diff_level Diff_slope]; !estimate variances F_level; F_slope; Diff_level; Diff_slope;

(Continued)

(Continued)

SIMULTANEOUS "DEPENDENT" METHOD M level M slope MMS1@MT1 MMS 2@MT2 MMS 3@MT3 MMS4@MT4 MMS5@MT5; F_level F_slope |FMS1@FT1 FMS2@FT2 FMS3@FT3 FMS4@FT4 FMS5@FT5; !means set to zero [MMS1@0]; [MMS2@0]; [MMS3@0]; [MMS4@0]; [MMS4@0]; [FMS1@0]; [FMS2@0]; [FMS3@0]; [FMS4@0]; [FMS5@0]; !residual variances constrained to be equal MMS1 MMS2 MMS3 MMS4 MMS5 (1); FMS1 FMS2 FMS3 FMS4 FMS5 (2); !at a given time, residuals are allowed to correlate between dyad members !but constrained to be equal across time points MMS1 with FMS1 (3); MMS2 with FMS2 (3); MMS3 with FMS3 (3); MMS4 with FMS4 (3); MMS5 with FMS5 (3); !create difference score between M_level and F_level, M_slope and F_slope !to mimic the MLM specification Diff level by M level@1; M_level on F_level@1; Diff_slope by M_slope@1; M_slope on F_slope@1; !set means and variances of m_level and m_slope to zero [M_level@0 M_slope@0]; M_level@0 M_slope@0; !estimate means of Father intercept and slope [F_level F_slope]; !estimate means of the difference variables [Diff_level Diff_slope]; !estimate variances F_level; F_slope; Diff_level; Diff_slope;