Supporting Information

Enhanced forward osmosis desalination with a hybrid ionic liquid/hydrogel thermo-responsive draw agent system

Chih-Hao Hsu^a, Canghai Ma^a, Ngoc Bui^a, Zhuonan Song^a, Aaron D. Wilson^b, Robert Kostecki^c, Kyle M. Diederichsen^d, Bryan D. McCloskey^d, Jeffrey J. Urban^{*,a}

^a The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^b Idaho National Laboratory, P.O. Box 1625 MS 2208, Idaho Falls, ID 83415, USA

^c Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^d Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA

*Corresponding author: jjurban@lbl.gov

Figure S1. The LCSTs of ILs were determined by monitoring the transmittance of light ($\lambda = 600$ nm) via (a) the temperature-controlled UV-Vis setup. The turbidity change below and above the LCST was demonstrated by the 10 wt% P₄₄₄₄-VBS solution. The turbidity curves of (b) P₄₄₄₄-MBS, (c) P₄₄₄₄-DMBS, and (d) P₄₄₄₄-VBS.

Figure S2. ¹H NMR spectra of (a) P₄₄₄₄-MBS, (b) P₄₄₄₄-DMBS, and (c) P₄₄₄₄-VBS.

Figure S3. Viscosities of 10, 20, 30, 40, 50, 60, and 70 wt% P₄₄₄₄-DMBS aqueous solutions (a) measured by the falling bob method at 15 $^{\circ}$ C, and (b) measured by an electromagnetically spinning viscometer at 25 $^{\circ}$ C.

Figure S4. Reverse solute fluxes performed by our binary draw system-of-interest. Traces of ILs were measured with ICP-OES. An average reverse flux value of $13.6\pm2.7 \text{ g/m}^2 \cdot \text{hr} (0.031\pm0.006 \text{ mol/m}^2 \cdot \text{hr})$ of P₄₄₄₄-DMBS was observed in the IL/hydrogel binary draw system process.