Supporting Information

Trans-Diastereoselective Syntheses of γ-Lactones by Visible Light-Iodine

Mediated Carboesterification of Alkenes

Saki Maejima^a, Eiji Yamaguchi,*^a Akichika Itoh*^a

^a*Gifu Pharmaceutical University,* 1-25-4 *Daigaku-nishi, Gifu* 501-1196, *Japan* E-mail: yamaguchi@gifu-pu.ac.jp, itoha@gifu-pu.ac.jp

Table of Contents	
Figure S1. General reaction set up	S2
Figure S2. The wave length and spectral irradiance of fluorescent lamp	S2
Figure S3. UV-Vis absorption spectra of the iodine and styrene	S3
Table S1. Optimization of reaction conditions	S4
Table S2. Optimization of bases	S5
Scheme S1. Reaction with radical scavenger	S6
Scheme S2. Reaction of styrene 1a with iodine	S6
Scheme S3. Reduction of 3a-I	S 6
NMR spectra of lactones 3	S7
Figure S4. Key NOE of 3pa-cis	S19
Figure S5. Key NOE of 3pa-trans	S20
Figure S6. Key NOE of Diastereomer 3	S21
Figure S7. Molecular structure of 3ha	S24
Table S3. Experimental details	S25
Table S4. Selected geometric parameters	S26
Reference	S28

Figure S1. General reaction set up

Figure S2. The wave length and spectral irradiance of fluorescent lamp (ERF25ED/22-SP-F)

Figure S3. UV/Vis absorption spectra of the iodine and styrene

The *t*BuOH solution were prepared to 1.0×10^{-4} M, and the UV/Vis absorption spectra of I₂, styrene and I₂/styrene were measured.

	Wavelength (nm)	Abs.		Wavelength (nm)	Abs.		Wavelength (nm)	Abs.
I ₂ (10 ⁻⁴ M)	359	0.75	Styrene (10 ⁻⁴ M)	291	0.26	I ₂ /Styrene (10 ⁻⁴ M)	359	0.727
	289	1.50		282	0.345		291	1.643

Table S1. Optimization of reaction conditions

Ph	CO ₂ Me Me ^{CO} 2Me	I ₂ (1.0 equiv) base (1.0 equiv) solvent CFL Ar, rt, 20 h	Ph Me OMe	Ph ^{viv} Me	
1a	2a		3aa-cis	3aa-trans	

entry	base	solvent	3aa yield (%)	$dr (cis : trans)^a$
1	Ca(OH) ₂	MeOH	17	33:67
2	Ca(OH) ₂	EtOH	67^{b}	48:52
3	Ca(OH) ₂	IPA	85 ^b	48:42
4	Ca(OH) ₂	^t AmylOH	74	66:34
5	Ca(OH) ₂	'BuOH	83	79:21
6 ^c	Ca(OH) ₂	'BuOH	23	70:30
7	Mg(OH) ₂	'BuOH	trace	-
8	Ba(OH) ₂	'BuOH	74	67:33
9	Sr(OH) ₂	'BuOH	33	50:50
10	BaCO ₃	'BuOH	trace	-
11	SrCO ₃	'BuOH	trace	-
12	NaHCO ₃	^t BuOH	32	50:50
13	Na ₂ CO ₃	'BuOH	77	45:55
14	K ₂ CO ₃	'BuOH	53	40:60
15	Cs_2CO_3	'BuOH	49	37:63
16	КОН	'BuOH	36	33:67
17	K ₃ PO ₄	'BuOH	26	30:70
18	-	'BuOH	no reaction	-
19 ^d	Ca(OH) ₂	'BuOH	no reaction	-

^{*a*} Diasteremeric ratio were determined by ¹H NMR analysis of crude reaction mixture.

^b Transesterification product was also included.

^c 0.5 equiv of I₂ was used.

^{*d*} Without iodine.

Table S2. Optimization of bases

	Ph +	CO ₂ Me Me ^{CO} 2Me	I ₂ (1.0 equiv) base (1.0 equiv) ^f BuOH/H ₂ O (3 mL) CFL Ar, rt, 20 h	Ph Me OMe	Ph''' Me
	1a	2a		3aa-cis	3aa- <i>trans</i>
entry		base	3aa yie	ld (%)	$dr (cis : trans)^a$
1		Mg(OH) ₂	65		34:66
2		Ca(OH) ₂	61		40:60
3		Sr(OH) ₂	29		42:58
4		Ba(OH) ₂	7		29:71
5		SrCO ₃	trace		-
6		BaCO ₃	trace		-
7		NaOH	20		25:75
8		КОН	trace		-
9		NaHCO ₃	20		25:75
10		Li ₂ CO ₃	60		29:71
11		Na ₂ CO ₃	69		25:75
12		K ₂ CO ₃	60		26:74
13		Cs_2CO_3	56		28:72
14		K ₃ PO ₄	41		27:73

^{*a*} Diasteremeric ratio were determined by ¹H NMR analysis of crude reaction mixture.

Scheme S1. Reaction with radical scavenger^{S1}

A Pyrex[®] test tube (16.5 cm × 1.5 cm) containing a mixture of dimethyl 2-methylmalonate **2a** (44 mg, 0.30 mmol), l₂ (76 mg, 1.0 equiv., 0.30 mmol), calcium hydroxide (22 mg, 1.0 equiv., 0.30 mmol), styrene **1a** (63 mg, 2.0 equiv., 0.60 mmol) and radical scavenger (1.0 equiv., 0.30 mmol) in ^{*t*}Butylalcohol (3.0 mL) was degassed *via* FPT cycling for three times and backfilled with Ar. The resulting solution was stirred at ambient temperature for 20 h. The reaction was quenched with sat. Na₂S₂O₃ aq. and extracted with Et₂O (10 mL x 3). The combined organic layers were washed with brine, dried over Mg₂SO₄, filtered and concentrated *in vacuo*. The reaction was inhibited in both TEMPO and Galvinoxyl, and lactone **3aa** was not obtained.

Scheme S2. Reaction of styrene 1a with iodine

	I ₂ , Na ₂ CO ₃ (0.3 mmol)	O ^t Bu	0	O II
Ph >	^t BuOH (3 mL), Ar, 20 h	Ph	Ph	Ph
1a	hv	4a 22%	4a' trace	5a trace
	I ₂ , Na ₂ CO ₃ (0.3 mmol)	40	40'	Fo
1a	^t BuOH (3 mL), Ar, 20 h dark, 60 °C	27%	4a n.d.	эа n.d.
	I ₂ , Na ₂ CO ₃ (0.3 mmol)			
1 a	^t BuOH (3 mL), <mark>O₂</mark> , 5 h	4a	4a'	5a
	hv	19%	42%	trace
	I ₂ , Na ₂ CO ₃ (0.3 mmol)	40	40'	50
1a	^t BuOH (3 mL), <mark>O₂</mark> , 5 h	44	4a	Ja
	dark, 60 °C	26%	n.d.	n.d.

Scheme S3. Reduction of 3a-I

NMR spectra of lactones 3

Figure S4. Key NOE of 3pa-cis

Figure S5. Key NOE of 3pa-trans

Figure S7. Molecular structure of 3ha

Molecular structure of 3ha (ORTEP drawing; thermal ellipsoids set to 50% probability).

Crystal data			
Chemical formula	$C_{13}H_{13}BrO_4$		
M _r	313.14		
Crystal system, space	Triclinic, P^-1		
group			
Temperature (K)	293		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.848 (4), 12.172 (6), 12.759 (6)		
α, β, γ (°)	103.682 (7), 98.765 (5), 90.185 (7)		
$V(Å^3)$	1318.4 (10)		
Ζ	4		
Radiation type	Μο Κα		
μ (mm ⁻¹)	3.12		
Crystal size (mm)	$0.29 \times 0.29 \times 0.03$		
Data collection			
Diffractometer	Mercury CCD (2x2 bin mode)		
Absorption correction	Numerical		
T_{\min}, T_{\max}	0.465, 0.766		
No. of measured,	11070, 6015, 3110		
independent and			
observed $[I > 2\sigma(I)]$			
reflections			
R _{int}	0.044		
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.650		
Refinement			
$R[F^2 > 2\sigma(F^2)],$	0.069, 0.176, 1.06		
$wR(F^2), S$			
No. of reflections	6015		
No. of parameters	329		
H-atom treatment	H-atom parameters constrained		
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.46, -0.52		

Computer programs: SHELXL2014/7 (Sheldrick, 2014).

Br1—C1	1.891 (5)	C4—C7	1.490 (7)
Br2—C14	1.893 (5)	C5—C6	1.383 (7)
O1—C10	1.356 (6)	С7—С8	1.507 (7)
O1—C7	1.480 (5)	C8—C9	1.537 (6)
O2—C10	1.193 (5)	C9—C11	1.504 (6)
O3—C11	1.197 (6)	C9—C10	1.512 (6)
O4—C11	1.325 (6)	C9—C12	1.533 (7)
O4—C13	1.447 (6)	C14—C19	1.364 (8)
O5—C23	1.344 (6)	C14—C15	1.376 (7)
O5—C20	1.474 (5)	C15—C16	1.388 (7)
O6—C23	1.200 (5)	C16—C17	1.388 (7)
O7—C24	1.191 (6)	C17—C18	1.386 (7)
O8—C24	1.320 (5)	C17—C20	1.495 (7)
O8—C26	1.444 (6)	C18—C19	1.384 (8)
C1—C6	1.365 (7)	C20—C21	1.523 (7)
C1—C2	1.367 (6)	C21—C22	1.534 (6)
C2—C3	1.368 (7)	C22—C24	1.524 (7)
C3—C4	1.399 (6)	C22—C25	1.524 (7)
C4—C5	1.395 (7)	C22—C23	1.527 (6)
C10—O1—C7	109.9 (4)	O3—C11—C9	124.9 (5)
C11—O4—C13	118.4 (4)	O4—C11—C9	111.9 (4)
C23—O5—C20	109.9 (3)	C19—C14—C15	121.4 (5)
C24—O8—C26	117.2 (4)	C19—C14—Br2	118.9 (4)
C6—C1—C2	121.0 (5)	C15—C14—Br2	119.7 (5)
C6—C1—Br1	119.0 (4)	C14—C15—C16	118.7 (5)
C2—C1—Br1	120.1 (4)	C15—C16—C17	121.3 (5)
C1—C2—C3	119.7 (4)	C18—C17—C16	118.1 (5)
C2—C3—C4	121.5 (5)	C18—C17—C20	119.4 (5)
C5—C4—C3	117.2 (5)	C16—C17—C20	122.4 (5)
C5—C4—C7	119.8 (4)	C19—C18—C17	121.0 (5)
C3—C4—C7	123.0 (4)	C14—C19—C18	119.5 (5)
C6—C5—C4	120.9 (4)	O5—C20—C17	108.5 (4)
C1—C6—C5	119.6 (5)	O5—C20—C21	103.2 (4)
O1—C7—C4	107.6 (4)	C17—C20—C21	117.6 (4)
O1—C7—C8	103.3 (3)	C20—C21—C22	102.2 (4)
C4—C7—C8	118.1 (4)	C24—C22—C25	111.1 (4)

Table S4. Selected geometric parameters (Å, °)

С7—С8—С9	101.9 (4)	C24—C22—C23	106.3 (4)
C11—C9—C10	107.9 (4)	C25—C22—C23	112.3 (4)
C11—C9—C12	111.0 (4)	C24—C22—C21	109.9 (4)
C10—C9—C12	111.8 (4)	C25—C22—C21	116.0 (4)
С11—С9—С8	109.3 (3)	C23—C22—C21	100.4 (4)
С10—С9—С8	101.1 (4)	O6—C23—O5	121.9 (4)
С12—С9—С8	115.1 (4)	O6—C23—C22	127.7 (5)
O2—C10—O1	122.3 (5)	O5—C23—C22	110.4 (4)
O2—C10—C9	128.2 (5)	O7—C24—O8	124.0 (5)
O1—C10—C9	109.5 (4)	O7—C24—C22	125.2 (5)
O3—C11—O4	123.2 (5)	O8—C24—C22	110.7 (4)
C6—C1—C2—C3	3.0 (8)	C19—C14—C15—C16	1.5 (7)
Br1—C1—C2—C3	-176.9 (4)	Br2—C14—C15—C16	-178.4 (3)
C1—C2—C3—C4	-0.6 (8)	C14—C15—C16—C17	0.6 (7)
C2—C3—C4—C5	-1.7 (8)	C15—C16—C17—C18	-2.3 (7)
C2—C3—C4—C7	178.2 (5)	C15—C16—C17—C20	177.5 (4)
C3—C4—C5—C6	1.6 (8)	C16—C17—C18—C19	1.9 (7)
C7—C4—C5—C6	-178.3 (5)	C20—C17—C18—C19	-177.9 (4)
C2—C1—C6—C5	-3.0 (8)	C15—C14—C19—C18	-1.8 (7)
Br1—C1—C6—C5	176.9 (4)	Br2—C14—C19—C18	178.0 (4)
C4—C5—C6—C1	0.7 (8)	C17—C18—C19—C14	0.1 (7)
C10—O1—C7—C4	147.7 (4)	C23—O5—C20—C17	148.0 (4)
C10—O1—C7—C8	22.1 (5)	C23—O5—C20—C21	22.5 (5)
C5—C4—C7—O1	123.6 (5)	C18—C17—C20—O5	124.4 (4)
C3—C4—C7—O1	-56.3 (6)	C16—C17—C20—O5	-55.4 (6)
C5—C4—C7—C8	-120.2 (5)	C18—C17—C20—C21	-119.1 (5)
C3—C4—C7—C8	60.0 (6)	C16—C17—C20—C21	61.1 (6)
O1—C7—C8—C9	-35.5 (4)	O5—C20—C21—C22	-35.4 (5)
C4—C7—C8—C9	-154.0 (4)	C17—C20—C21—C22	-154.8 (4)
C7—C8—C9—C11	-78.0 (4)	C20—C21—C22—C24	-77.1 (5)
C7—C8—C9—C10	35.6 (4)	C20—C21—C22—C25	155.8 (4)
C7—C8—C9—C12	156.3 (4)	C20—C21—C22—C23	34.5 (5)
C7—O1—C10—O2	-177.8 (5)	C20—O5—C23—O6	-177.7 (5)
C7—O1—C10—C9	1.5 (5)	C20—O5—C23—C22	0.3 (6)
C11—C9—C10—O2	-89.8 (6)	C24—C22—C23—O6	-90.3 (6)
C12—C9—C10—O2	32.5 (7)	C25—C22—C23—O6	31.4 (8)
C8—C9—C10—O2	155.4 (5)	C21—C22—C23—O6	155.3 (6)
С11—С9—С10—О1	91.0 (5)	C24—C22—C23—O5	91.8 (5)

C12—C9—C10—O1	-146.7 (4)	C25—C22—C23—O5	-146.5 (5)
C8—C9—C10—O1	-23.7 (5)	C21—C22—C23—O5	-22.6 (5)
C13—O4—C11—O3	-4.8 (8)	C26—O8—C24—O7	-1.9 (8)
C13—O4—C11—C9	173.0 (4)	C26—O8—C24—C22	175.7 (4)
C10—C9—C11—O3	-3.7 (7)	C25—C22—C24—O7	-123.5 (6)
C12—C9—C11—O3	-126.6 (6)	C23—C22—C24—O7	-1.1 (7)
C8—C9—C11—O3	105.4 (6)	C21—C22—C24—O7	106.8 (6)
C10—C9—C11—O4	178.5 (4)	C25—C22—C24—O8	59.0 (5)
C12—C9—C11—O4	55.6 (5)	C23—C22—C24—O8	-178.6 (4)
C8—C9—C11—O4	-72.4 (5)	C21—C22—C24—O8	-70.8 (5)

<u>Reference</u>

S1 S. Maejima, E. Yamaguchi, A. Itoh, *Adv. Synth. Catal.* **2017**, *359*, 3883-3887.