Electronic Supplementary Material (ESM)

Environmentally sustainable synthesis of CoFe₂O₄-TiO₂/rGO ternary photocatalyst: A highly efficient and stable photocatalyst for high production of hydrogen (Solar Fuel)

Hafeez Yusuf Hafeez,^a, Sandeep Kumar Lakhera,^b, Naresh Narayanan,^{a,b}, Subramaniam Harish,^c, Yasuhiro Hayakawa ,^c,Byeong-Kyu Lee,^d, and Bernaurdshaw Neppolian,*^a

^aSRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, Tamil Nadu, India.

^bDepartment of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai- 603203, Tamil Nadu, India.

^cResearch Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8011, Japan.

^dDepartment of Civil and Environmental Engineering, University of Ulsan (UOU), Daehak-ro 93, Nam-gu, Ulsan 44610, South Korea.

CONTENTS

Section S1: Apparent Quantum Yield (AQY) efficiency Calculation

Figure S1. FE-SEM images of (a) TiO_2 and (b) $CoFe_2O_4$ - TiO_2/rGO n photocatalysts and (c) EDS pattern and elemental mapping of $CoFe_2O_4$ - TiO_2/rGO photocatalysts

Figure S2. Impedance measurement of TiO_2 , $CoFe_2O_4$ - TiO_2 and $CoFe_2O_4$ - TiO_2/rGO photocatalysts

Figure S3. Photocurrent studies of TiO_2 , $CoFe_2O_4$ - TiO_2 and $CoFe_2O_4$ - TiO_2/rGO photocatalysts **Table S1.** Photocatalytic H₂ production comparison with existing TiO_2 based materials

Section S1: Apparent Quantum Yield (A.Q.Y) efficiency Calculation

We have calculated the quantum efficiency in order to compare the photocatalytic activity of photocatalysts by using 400 nm band pass filter.

A.Q.Y Calculation details

The energy of one photon (*E* photon) with wavelength of λ_{inc} (nm) is calculated using the following equation.

$$E_{photon} = \frac{hc}{\lambda_{inc}}$$

Total energy of the incident light (E_{total})

$$E_{total} = PSt$$

Therefore,

Quantum yield (Q.Y.)

Q.Y (%) =
$$\frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100$$

Or

A.Q.Y (%) =
$$\frac{2 \times (\text{Number of H}_2 \text{ molecules evolved})}{\text{Number of incident photons}} \times 100$$

A.Q.Y (%) =
$$\frac{2 \times M \times N_A \times h \times c}{P \times S \times t \times \lambda_{inc}} \times 100$$

Where

M = Amount of hydrogen produced in $\frac{\text{mol}}{\text{time}}$ = 2732 µmol/h

$$\begin{split} N_A &= \text{Avogadro Number} = 6.022 \times 10^{23} \\ c &= \text{Speed of light} = 3 \times 10^8 \text{ ms}^{-2} \\ h &= \text{Planck's constant} = 6.626 \times 10^{-34} \text{ Js} \\ P &= \text{Power density of the incident monochromatic light} = 100 \text{ mW/cm}^2) \\ S &= \text{Irradiated area to produce M (mol) of hydrogen} = 35 \text{ cm}^2 \\ t &= \text{Irradiated time} = 1 \text{ h} = 3600 \text{ s} \\ \lambda_{\text{inc}} &= \text{wavelength of the incident monochromatic light} = 400 \text{ nm} = 400 \times 10^{-9} \text{ m} \end{split}$$

A.Q.Y (%) =
$$\frac{2 \times 2732 \times 10^{-6} \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^{8}}{100 \times 10^{-3} \times 35 \times 3600 \times 400 \times 10^{-9}} \times 100$$

A.Q.Y (%) = 12.97 %

Figure S1. FE-SEM images of (a) TiO_2 and (b) $CoFe_2O_4$ - TiO_2/rGO n photocatalysts and (c) EDS pattern and elemental mapping of $CoFe_2O_4$ - TiO_2/rGO photocatalyst

Figure S2. Impedance measurement of TiO_2 , $CoFe_2O_4$ - TiO_2 and $CoFe_2O_4$ - TiO_2/rGO photocatalysts

Figure S3. Photocurrent studies of TiO₂, CoFe₂O₄-TiO₂and CoFe₂O₄-TiO₂/rGO photocatalysts

Photocatalysts	Co-catalysts	Hole Scavengers	Irradiation	H ₂ production	Ref
			Source	(µmol g ⁻¹ h ⁻¹)	(year)
TiO ₂	CuFe ₂ O ₄ /rGO	Glycerol	250 W Xe	35981	[1]
					(2018)
TiO ₂	MWT/rGO	Glycerol	250 W Xe	29000	[2]
					(2019)
TiO ₂	Ni(OH) ₂	Glycerol	300 Xe Lamp	4719	[3]
					(2018)
TiO ₂	NiS	Methanol	300 Xe Lamp	655	[4]
					(2018)
TiO ₂	Ni(HCO ₃) ₂	Methanol	300 Xe Lamp	1798	[5]
					(2017)
TiO ₂	CuxS	Methanol	300 Xe Lamp	5620	[6]
					(2018)
TiO ₂	ZrCO ₂ /rGO	Glycerol	Solar light	7773	[7]
					(2018)
TiO ₂	CuS	Na ₂ SO ₃ & Na ₂ S	300 Xe Lamp	1262	[8]
					(2018)
TiO ₂	CdS	Na ₂ SO ₃ & Na ₂ S	300 Xe Lamp	1048	[9]
					(2017)
TiO ₂	CuOCr ₂ O ₃	Glycerol	Solar light	70400	[10]
					(2018)
TiO ₂	Bi ₂ O ₃	Glycerol	Solar light	26020	[11]
					(2017)
TiO ₂	Cu ₂ O/rGO	Glycerol	300 Xe Lamp	110 968	[12]
					(2015)
TiO ₂	InVO ₄ /rGO	Glycerol	250 Xe Lamp	33980	[13]
					(2019)
TiO ₂	CoFe ₂ O ₄ /rGO	Glycerol	250 Xe Lamp	76559	This

Table S1 Photocatalytic H_2 production comparison with existing TiO_2 based materials

Work

REFERENCES

(1) H. Y. Hafeez, S. K. Lakhera, P. Karthik, M. Anpo and B. Neppolian. Facile construction of ternary $CuFe_2O_4$ -TiO₂ nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient Hydrogen production. *Appl. Sur. Sci.* **2018**, 449, 772-779.

(2) S. Bellamkonda, N. Thangavel, H. Y. Hafeez, B. Neppolian and G. R. Rao. Highly active and stable multi-walled carbon nanotubes-graphene-TiO₂ nanohybrid: An efficient non-noble metal photocatalyst for water splitting. *Catal. Today*, **2019**, 321–322, 120-127.

(3) N. L. Reddy, K. K. Cheralathan, V. D. Kumari, B. Neppolian and M. V. Shankar. Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen Generation Using Ni(OH)₂ Decorated TiO₂ Nanotubes under Solar Light Irradiation. *ACS Sustainable Chem. Eng.* **2018**, 6, 3754-3764.

(4) Feiyan Xu, Liuyang Zhang, Bei Cheng, and Jiaguo Yu. Direct Z-Scheme TiO₂/NiS Core– Shell Hybrid Nanofibers with Enhanced Photocatalytic H₂-Production Activity. *ACS Sustainable Chem. Eng.*, **2018**, 6, 12291-12298.

(5) Yi Wei, Gang Cheng, Jinyan Xiong, Feifan Xu, and Rong Chen. Positive Ni(HCO₃)₂ as a Novel Cocatalyst for Boosting the Photocatalytic Hydrogen Evolution Capability of Mesoporous TiO₂ Nanocrystals. *ACS Sustainable Chem. Eng.* **2017**, *5*, 5027-5038.

(6) Haifeng Dang, Zhiyu Cheng, Wei Yang, Wei Chen, Weiqing Huang, Baoqing Li, Zhisheng Shi, Yongfu Qiu, Xinfa Dong and Hongbo Fan. Room-temperature synthesis of Cu_xS (x=1 or 2) co-modified TiO₂ nanocomposite and its highly efficient photocatalytic H₂ production activity. *J. Alloys. Comp.* **2017**, 709, 422-430.

(7) N. Subha, M. Mahalakshmi, M. Myilsamy, N. Lakshmana Reddy, M. V. Shankar, B. Neppolian and V. Murugesan. Effective excitons separation on graphene supported ZrO₂-TiO₂ heterojunction for enhanced H₂ production under solar light. *Int. J. Hydrogen Energy*, **2018**, 43, 3905-3919.

(8) Moumita Chandra, Kousik Bhunia, and Debabrata Pradhan. Controlled Synthesis of CuS/TiO₂ Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting. *Inorg. Chem.*, **2018**, 57, 4524-4533.

(9) Jimin Dua, Huiming Wanga, Mengke Yanga, Kaidi Lia, Lixin Zhao, Guoyan Zhao, Sujuan Lia, Xiaolei Gu, Yalan Zhou, Le Wang, Yating Gao and Weimin Wanga and Dae Joon Kang. Pyramid-like CdS nanoparticles grown on porous TiO₂ monolith: An advanced photocatalyst for H₂ production. *Electrochimica Acta*, **2017**, 250, 99-107.

(10) P Ravi, V Navakoteswara Rao, MV Shankar, M Sathish. $CuOCr_2O_3$ core-shell structured co-catalysts on TiO₂ for efficient photocatalytic water splitting using direct solar light. *Int. J. Hydrogen Energy*, **2018**, 43, 3976-3987.

(11) N. Lakshmana Reddy, S. Emin , M. Valant and M.V. Shankar. Nanostructured Bi₂O₃@TiO₂ photocatalyst for enhanced hydrogen production. *Int. J. Hydrogen Energy*, 2017, 42, 6627-6636.

(12) S. G. Babu, R. Vinoth, D. P. Kumar, M. V. Shankar, H. L. Chou, K. Vinodgopal and B.Neppolian. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO_2 p–n heterojunction for increased hydrogen production. *Nanoscale*, **2015**, **7**, 7849-7857.

(13) H. Y. Hafeez, S. K. Lakhera, M. Ashokkumar and B. Neppolian. Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported $InVO_4$ -TiO₂ nanocomposite for efficient Hydrogen production. *Ultrason. Sonochem.* **2019** (In press), DOI: 10.1016/j.ultsonch.2018.12.009.