# Molecular Modeling Based Delivery System Enhances Everolimus-Induced Apoptosis in Caco-2 Cells

Marwan Abdelmahmoud Abdelkarim Maki<sup>1</sup>, Palanirajan Vijayaraj Kumar<sup>1\*</sup>, Shiau Chuen Cheah<sup>2</sup>, Yeong Siew Wei<sup>1</sup>, Mayasah Al-Nema<sup>1</sup>, Omer Bayazeid<sup>3</sup>, and Abu Bakar Bin Abdul Majeed<sup>4</sup>

<sup>1</sup> UCSI University, Faculty of Pharmaceutical Sciences, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia

<sup>2</sup> UCSI University, Faculty of Medicine & Health Sciences, No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia

<sup>3</sup> Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Ankara, Turkey

<sup>4</sup> Universiti Teknologi MARA, Faculty of Pharmacy, Research Management Institute, Shah Alam, Malaysia

\*Corresponding Author: Palanirajan Vijayaraj Kumar Faculty of Pharmaceutical Sciences, UCSI University No. 1, Jalan Menara Gading, Taman Connaught, Cheras 56000, Kuala Lumpur, Malaysia Phone: +60103782399, Ext. 2249 Fax: (+603) 9102 2614 E-mail: vijayarajkumar\_p@yahoo.com 1. Assessment of FGF7:β-CD:EV complex stability and EV release profile in Dulbecco's Modified Eagle Medium (DMEM)



Figure S1. Dialysis tubing procedure

## 2. Cytotoxicity of FGF7:β-CD:EV complex on normal cells



**Figure S2.** Cytotoxic effect of EV on FHs 74 Int cells as displayed by the RTCA DP instrument. Cells were seeded overnight to reach the log phase, then incubated with 3.26  $\mu$ M EV (A), 6.52  $\mu$ M EV (B), or 13.04  $\mu$ M EV (C). IC<sub>50</sub> value of EV on FHs 74 Int cells was found to be 19.25  $\pm$  1.35  $\mu$ M.



**Figure S3.** Cytotoxic effect of FGF7:EV on FHs 74 Int cells as displayed by the RTCA DP instrument. Cells were seeded overnight to reach the log phase, then incubated with FGF7:EV complex (contains 1.58  $\mu$ M FGF7 and 3.26  $\mu$ M EV) (A), FGF7:EV (contains 1.58  $\mu$ M FGF7 and 6.52  $\mu$ M EV) (B), or FGF7-EV (contains 1.58  $\mu$ M FGF7 and 13.04  $\mu$ M EV) (C). IC<sub>50</sub> value of EV on FHs 74 Int cells was found to be 15.9 ± 0.95  $\mu$ M.



**Figure S4.** Cytotoxic effect of  $\beta$ -CD:EV on FHs 74 Int cells as displayed by the RTCA DP instrument. Cells were seeded overnight to reach the log phase, then incubated with  $\beta$ -CD:EV inclusion complex (contains 3.26  $\mu$ M EV) (A),  $\beta$ -CD:EV inclusion complex (contains 6.52  $\mu$ M EV) (B), or  $\beta$ -CD:EV inclusion complex (contains 13.04  $\mu$ M EV) (C). IC<sub>50</sub> value of EV on FHs 74 Int cells was found to be 16.55 ± 1.05  $\mu$ M.



**Figure S5.** Cytotoxic effect of FGF7: $\beta$ -CD:EV complex on FHs 74 Int cells as displayed by the RTCA DP instrument. Cells were seeded overnight to reach the log phase, then incubated with FGF7: $\beta$ -CD:EV complex (contains 1.58  $\mu$ M FGF7, 55.07  $\mu$ M  $\beta$ -CD and 3.26  $\mu$ M EV) (A), FGF7: $\beta$ -CD:EV complex (contains 1.58  $\mu$ M FGF7, 110.13  $\mu$ M  $\beta$ -CD and 6.52  $\mu$ M EV) (B) or FGF7: $\beta$ -CD:EV complex (contains 1.58  $\mu$ M FGF7, 220.27  $\mu$ M  $\beta$ -CD and 13.04  $\mu$ M EV) (C). IC<sub>50</sub> value of EV on FHs 74 Int cells was found to be 34.11  $\pm$  1.9  $\mu$ M.

#### **3.** Assessment of FGF7:β-CD:EV complex retention in Caco-2 cells

#### Chromatographic conditions

The method is modified from Carpentier et al.<sup>1</sup> and Spandana et al.<sup>2</sup>. Briefly, treated cells were detached and centrifuged at 400g x 7 minutes, then 0.1 ml of tetraborate buffer (pH 9.8), 0.1 ml of EV solution (10 mg/L) as internal standard, and 1.8 ml of dichloromethane/methanol 4:1 (v/v) were immediately added to the cell pellet. After a vigorous agitation, the organic phase was removed and evaporated to dryness. The dry residue was dissolved in the mobile phase: acetonitrile/double ultra-pure water 95:05 (v/v), and injected onto an Ascentis<sup>®</sup> C18 column (Supelco, Bellefonte PA, USA). The flow rate was 1 ml/min, the peaks were detected by PDA detection and wave length was set at 278 nm.

The results indicated that the penetration of EV from both samples was time-dependent, thus the accumulation was significantly increased with FGF7: $\beta$ -CD:EV complex application, only 3% of free EV was detected. The retention of EV was enhanced with the complex application as well. After 24 hours of exposure, ~3.5% of free drug was detected from cells treated with complex sample, and ~7% from cells treated with EV only sample.



**Figure S6.** The influence of FGF7: $\beta$ -CD complex on the time-dependent rate of Caco-2 cells uptake and retention of EV for an administered dose of 6.52  $\mu$ M. The free EV concentration was measured by HPLC.



**Figure S7.** Standard chromatogram of EV (6.25  $\mu$ g/mL).

## 4. Target Identification of β-CD and EV

Swiss target prediction software has been used for predicting molecular targets of  $\beta$ -CD and EV <sup>3</sup>. SMILES of  $\beta$ -CD and EV were obtained from PubChem (Table S1). The consensus molecular targets predicted by Swiss for  $\beta$ -CD and EV are listed in Table S3 and S4.

#### Table S1. Canonical SMILES of β-CD and EV

| Name                         | SMILE                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CD<br>(PUBCHEM CID: 444041)  | C(C1C2C(C(C(01)0C3C(OC(C(C30)0)0C4C(OC(C(C40)0)0C5C(OC(C(C50)0)0C6<br>C(OC(C(C60)0)0C7C(OC(C(C70)0)0C8C(OC(02)C(C80)0)C0)C0)C0)C0)C0)C0)<br>0)0)0 |
| EV<br>(PUBCHEM CID: 6442177) | CC1CCC2CC(C(=CC=CC=CC(CC(C(=O)C(C(C(=CC(C(=O)CC(OC(=O)C3CCCCN3C(=<br>O)C(=O)C1(O2)O)C(C)CC4CCC(C(C4)OC)OCCO)C)C)O)OC)C)C)C)C)OC                   |

Swiss predicts the molecular targets of small molecules based on their 2D and 3D similarity by comparing the query molecule to a library of 280 thousand compounds. Table S2 and S3 listed the molecular targets of  $\beta$ -CD and EV respectively. With high probability Swiss predicted that  $\beta$ -CD could target FGF-7 and FGF-10 (also known as KGF-1 and KGF-2, respectively) based on its 3D similarity to CHEMBL198643 (Figure S6) with a similarity score of 0.758 out of 1 EV targets Serine/threonine-protein kinase mTOR.



Figure S8. 2D structure of A) β-CD, B) CHEMBL198643

It has been reported that CHEMBL198643 strongly binds with FGF-1 and 2<sup>4</sup>. Based on the shape-similarity theory which states that molecules possessing similar 3D structure might exhibit analogous biological activity, we thought that  $\beta$ -CD would be able to binds to fibroblast growth factors. This is could be supported by the strong affinity of a similar structure ( $\beta$ -CD Tetradecasulfate) toward FGF <sup>5</sup>. Heparin is essential for FGF to generate a biological response through binding to FGF receptor. Heparin functions by binding to several FGF molecules forming FGF oligomerization. Then the FGF-heparin complex bind to couple of FGFRs, this leads to FGFR dimerization which

activates tyrosine kinase pathway. A study showed that synthetic heparin analog which can only bind to one FGF blocks the dimerization of FGFR, thus stopping its activation. We propose that  $\beta$ -CD antagonizes the action of heparin by binding to only one FGF, therefore it cannot induce FGF oligomerization thus preventing FGFR dimerization and activation <sup>6,7</sup>.

# 5. Binding ability of $\beta$ -CD and EV to FGF7

Molecular docking was performed via the molecular operating environment (MOE.2014) software for  $\beta$ -CD and EV in the heparin binding site of basic fibroblast growth factor (1BFB.pdb)<sup>8</sup> with scoring affinity London dG and GBVI/WSA dG. The obtained docking affinity scores are shown in Figure S9.

|    | mol     | rseq | mseq | S       | rmsd_refine | E_conf   | E_place  | E_score1 | E_refine | E_score2 |
|----|---------|------|------|---------|-------------|----------|----------|----------|----------|----------|
| 1  | 6442177 | 1    | 1    | -5.0092 | 5.3896      | 249.3156 | -27.0249 | -8.0561  | -17.0150 | -5.0092  |
| 2  | 6442177 | 1    | 1    | -4.8737 | 3.2159      | 238.9634 | -41.8554 | -8.3144  | -14.0658 | -4.8737  |
| 3  | 6442177 | 1    | 1    | -4.8022 | 1.6303      | 256.8998 | -21.7023 | -8.5919  | -15.1917 | -4.8022  |
| 4  | 6442177 | 1    | 1    | -4.7126 | 2.8163      | 245.0996 | -23.7716 | -8.0905  | -13.0527 | -4.7126  |
| 5  | 6442177 | 1    | 1    | -4.7104 | 2.2270      | 238.7883 | -38.0680 | -9.0713  | -12.1594 | -4.7104  |
| 6  | 6442177 | 1    | 1    | -4.6170 | 2.7003      | 254.6145 | -3.1844  | -7.9129  | -17.1669 | -4.6170  |
| 7  | 6442177 | 1    | 1    | -4.4615 | 1.7729      | 238.0406 | -30.6175 | -9.5801  | -14.7607 | -4.4615  |
| 8  | 6442177 | 1    | 1    | -4.2688 | 2.2017      | 237.3359 | -54.2724 | -8.1642  | -11.7695 | -4.2688  |
| 9  | 6442177 | 1    | 1    | -4.0870 | 4.2871      | 247.2750 | -40.7168 | -8.3377  | -8.9479  | -4.0870  |
| 10 | 6442177 | 1    | 1    | -4.0772 | 2.0780      | 256.3575 | 7.1687   | -8.6806  | -7.7938  | -4.0772  |
| 11 | 444041  | 1    | 2    | -5.2439 | 1.9786      | 624.7195 | -64.3874 | -9.1450  | -18.8291 | -5.2439  |
| 12 | 444041  | 1    | 2    | -4.8375 | 2.8882      | 621.0886 | -7.2920  | -9.5388  | -15.1178 | -4.8375  |
| 13 | 444041  | 1    | 2    | -4.5602 | 2.9452      | 615.8110 | -78.4285 | -9.1247  | -11.2252 | -4.5602  |
| 14 | 444041  | 1    | 2    | -4.1812 | 2.3501      | 631.4261 | -66.3765 | -9.6591  | -9.7925  | -4.1812  |
| 15 | 444041  | 1    | 2    | -4.0467 | 4.3664      | 631.7632 | -51.2175 | -9.3040  | -10.8069 | -4.0467  |
| 16 | 444041  | 1    | 2    | -4.0261 | 3.1508      | 625.8408 | -50.4002 | -10.1711 | -11.2005 | -4.0261  |
| 17 | 444041  | 1    | 2    | -3.6537 | 1.6517      | 623.4816 | -80.9887 | -9.6476  | -9.3564  | -3.6537  |
| 18 | 444041  | 1    | 2    | -3.6457 | 2.4040      | 617.8505 | -61.2162 | -9.5400  | -8.0208  | -3.6457  |
| 19 | 444041  | 1    | 2    | -3.6078 | 3.0788      | 624.0917 | -39.1023 | -9.8357  | -9.6159  | -3.6078  |
| 20 | 444041  | 1    | 2    | -3.5234 | 2.3457      | 624.4732 | -56.9427 | -9.2841  | -10.6297 | -3.5234  |

**Figure S9.** Docking scores for binding ability of  $\beta$ -CD (PubChem CID: 444041) and EV (PubChem CID: 6442177) to FGF7, obtained by MOE.2014 software.

## REFERENCES

1. Carpentier, Y.; Gorisse, M.; Desoize, B., Evaluation of a method for detection of cells with reduced drug retention in solid tumours. *Cytometry: The Journal of the International Society for Analytical Cytology* **1992**, *13* (6), 630-637.

2. Kari, S.; Srinivas, P.; Kumar, A., Rapid and Sensitive HPLC Method for Quantification of Everolimus and Its Application in Release Kinetics of Everolimus Eluting Coronary Stents. *Current research in Biological and Pharmaceutical Sciences (CRBPS)* **2013**, *2* (5).

3. Gfeller, D.; Michielin, O.; Zoete, V., Shaping the interaction landscape of bioactive molecules. *Bioinformatics* **2013**, *29* (23), 3073-3079.

4. Karoli, T.; Liu, L.; Fairweather, J. K.; Hammond, E.; Li, C. P.; Cochran, S.; Bergefall, K.; Trybala, E.; Addison, R. S.; Ferro, V., Synthesis, biological activity, and preliminary pharmacokinetic evaluation of analogues of a phosphosulfomannan angiogenesis inhibitor (PI-88). *Journal of medicinal chemistry* **2005**, *48* (26), 8229-8236.

5. Shing, Y.; Folkman, J.; Weisz, P. B.; Joullie, M. M.; Ewing, W. R., Affinity of fibroblast growth factors for  $\beta$ -cyclodextrin tetradecasulfate. *Analytical biochemistry* **1990**, *185* (1), 108-111.

6. Hsu, Y.-R.; Nybo, R.; Sullivan, J. K.; Costigan, V.; Spahr, C. S.; Wong, C.; Jones, M.; Pentzer, A. G.; Crouse, J. A.; Pacifici, R. E., Heparin is essential for a single keratinocyte growth factor molecule to bind and form a complex with two molecules of the extracellular domain of its receptor. *Biochemistry* **1999**, *38* (8), 2523-2534.

7. Spivak-Kroizman, T.; Lemmon, M.; Dikic, I.; Ladbury, J.; Pinchasi, D.; Huang, J.; Jaye, M.; Crumley, G.; Schlessinger, J.; Lax, I., Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. *Cell* **1994**, *79* (6), 1015-1024.

8. Faham, S.; Hileman, R. E.; Fromm, J. R.; Linhardt, R. J.; Rees, D. C., Heparin structure and interactions with basic fibroblast growth factor. *Science (New York, N.Y.)* **1996**, *271* (5252), 1116-20.