Supporting Information

Self-assembly of Diphenylalanine-Peptide Nucleic Acid-conjugates

Dhrubajyoti Datta^{a†}*, Omshanker Tiwari^{a†} and Manoj Kumar Gupta^a

^aDepartment of Chemistry, Chemical Biology Unit, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India

*Corresponding author [†]Equal Contribution

Table of Contents			
Contents	Page	Contents	Page
	No	4 40	No
Synthesis in solution phase	S-2	'H-/ ¹³ C -NMR of 8c	S-44
¹ H-/ ¹³ C -NMR of 1S	S-8	¹ H-/ ¹³ C -NMR and FTIR of 8d	S-45
¹ H-/ ¹³ C -NMR of 2S	S-9	¹ H-/ ¹³ C -NMR and FTIR of 9	S-47
¹ H-/ ¹³ C -NMR of 3S	S-10	¹ H-/ ¹³ C -NMR of Boc-Phe-Phe-OH used in SPPS	S-49
¹ H-/ ¹³ C -NMR of 4S	S-11	Synthesis of nucleopeptides through SPPS	S-50
¹ H-/ ¹³ C -NMR of 5S	S-12	HPLC trace, MALDI and UV spectrum of NP1-NP4	S-51
¹ H-/ ¹³ C -NMR of 6S	S-13	MALDI-Tof and ESI-MS of NP1:NP4 duplex	S-55
¹ H-/ ¹³ C -NMR of 7S	S-14	MALDI-Tof and ESI-MS of NP2:NP3 duplex	S-57
¹ H-/ ¹³ C -NMR of 8S	S-15	PXRD data	S-59
HRMS of 2a and 2b	S-16	FTIR data	S-60
¹ H-/ ¹³ C -NMR of 2c	S-17	Contact angle measurements	S-61
HRMS of 2c and 2d	S-18	SEM images	S-62
¹ H-/ ¹³ C -NMR of 3a	S-19	EDAX from SEM data for representative peptides	S-63
¹ H-/ ¹³ C -NMR of 3b	S-20	AFM images	S-64
¹ H-/ ¹³ C -NMR of 3c	S-21	Height profile from AFM images	S-65
¹ H-/ ¹³ C -NMR of 3d	S-22	HRTEM images	S-66
¹ H-/ ¹³ C -NMR and FTIR of 9S	S-23	DLS data	S-67
¹ H-/ ¹³ C -NMR of 4	S-25	Stability of nucleopeptide 6a under external stimuli	S-68
¹ H-/ ¹³ C -NMR of Nucleobase acetic acids	S-26	Effect of counter anions for 7c and 7d	S-69
¹ H-/ ¹³ C -NMR and FTIR of 5a	S-30	TGA data for representative peptides	S-70
¹ H-/ ¹³ C -NMR and FTIR of 5b	S-32	Stability of nucleopeptides under proteolytic conditions	S-71
¹ H-/ ¹³ C –NMR and FTIR of 5c	S-34	Solvent dependent morphology of 3c, 6a and 7d	S-74
¹ H-/ ¹³ C -NMR and FTIR of 5d	S-36	Time dependent morphology of 6a and 6b	S-76
¹ H-/ ¹³ C -NMR of 6a	S-38	Results of Turbidity Assay	S-77
¹ H-/ ¹³ C -NMR of 6b	S-39	Confocal images of CF encapsulated peptides	S-78
¹ H-/ ¹³ C -NMR of 6c	S-40	CF release study by dicationic dipeptide	S-78
¹ H-/ ¹³ C -NMR of 6d	S-41	Encapsulation and release of Dox from nucleopeptide	S-79
¹ H-/ ¹³ C -NMR of 7c	S-42	Cyclic voltammetry	S-80
¹ H-/ ¹³ C -NMR of 7d	S-43	References	S-86

CF= Carboxyfluorescein; **Dox** = Doxorubicin; **SPPS** = Solid Phase Peptide Synthesis

Synthesis of PNA monomer for amide / click conjugation with Phe-Phe moiety in solution phase:

Boc protected aminoethylglycyl (*aeg*) backbones **1S** and **2S** were synthesized first following known literature procedure¹. Compound **2S** was treated with nucleobase adenine (A), 2-amino-6-chloropurine (6-Cl-G), and thymine (T) under heating condition in presence of K_2CO_3 to afford intermediates **3S**, **4S** and **5S** in good yields. Again, **1S** was coupled with N^2 -(Isobutyryl)-9-(carboxymethyl)guanine to afford compound **6S** in moderate yield. The spectroscopic data matched perfectly with the literature values¹. The exocyclic amino groups at N^6 and N^2 positions of **3S** and **4S** were protected by Cbz and isobutyl groups to obtain **7S** and **8S** respectively in good yields. Finally, the Boc groups were removed from **5S**, **6S**, **7S** and **8S** in presence of 5% TFA in DCM to obtain **2a-d** (Scheme S1). After removal of volatile materials from the respective reaction mixtures and without further purification these PNA backbones were subjected for amide coupling with Boc-Phe-Phe-OH (**1**).

*According to converstion observed in TLC

Reagents and conditions: (i) K_2CO_3 , DMF, 75°C, 3 h; (ii) Cbz-Cl, NaHCO₃, rt, 8 h; (iii) Isobutyrylchloride, dry Py, 12.5 h; (iv) 50% TFA in DCM, 0 °C-rt, 4-6 h; (v) EDC.HCl, HOBt, DIPEA, dry DMF, 0°C-rt, 36 h

Scheme S1: Synthesis of PNA monomers for amide coupling

To conjugate PNA motifs with Boc-Phe-Propyne (4), azidoethylglycyl backbone $9S^2$ was synthesized first following the literature procedure. Compound 9S was coupled with N^6 -Bis(*tert*butyloxycarbonyl)-9-(carboxymethyl)adenine, N^6 -(Benzyloxycarbonyl)-9-(carboxymethyl)adenine, N^2 -(Isobutyryl)-9-(carboxymethyl)guanine and, thymine-1-ylacetic acid in presence of isobutyl chloroformate (IBCF) and N-methylmorpholine (NMM) to afford **5a-d** respectively (Scheme S2).

Spectroscopic data:

<u>Compound 1S</u>: Compound 1S was prepared following the known literature procedure¹. ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 5.10 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.40 (s, 2H), 3.22 (d, *J* = 5.2 Hz, 2H), 2.74 (t, *J* = 5.6 Hz, 2H), 1.44 (s, 9H), 1.28 ppm (td, *J* = 7.1, 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.7, 156.3, 79.4, 61.0, 50.6, 48.9, 40.3, 28.6, 14.4 ppm. HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₁₁H₂₃N₂O₄: 247.1658, found: 247.1666.

<u>Compound 2S</u>: Compound 2S was synthesized following the known literature procedure¹. ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 5.60 (s, 1H), 4.28 – 4.17 (m, 4H), 4.05 (s, 2H), 3.54 (t, *J* = 5.8 Hz, 2H), 3.29 (dd, *J* = 11.7, 5.9 Hz, 2H), 1.50 – 1.38 (m, 9H), 1.35 – 1.21 ppm (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.6, 169.1, 167.7, 167.6, 156.2, 156.1, 79.7, 79.3, 62.1, 61.6, 50.5, 49.5, 49.0, 48.2, 41.2, 40.8, 38.6, 38.3, 28.3, 14.1 ppm. HRMS (ESI⁺), m/z calculated for (M+Na)⁺ C₁₃H₂₃ClN₂O₅Na: 345.1192, found: 345.1198.

<u>Compound 3S</u>: Compound 3S was synthesized following the known procedure¹. ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 8.28 (d, *J* = 5.2 Hz, 1H), 7.92 (d, *J* = 16.5 Hz, 1H), 6.22 (d, *J* = 17.1 Hz, 2H), 5.84 (s, 0.75H), 5.23 (s, 0.25H), 5.07 (d, *J* = 8.1 Hz, 1.5H), 4.93 (s, 0.5H), 4.27 (s, 0.5H), 4.23 (dd, *J* = 14.3, 7.2 Hz, 0.5H), 4.16 (q, *J* = 7.2 Hz, 1.5H), 4.03 (s, 1.5H), 3.60 (t, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.36 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.36 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.52 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, *J* = 5.5 Hz, 0.5H), 3.56 (d, *J* = 5.4 Hz, 1.5H), 3.55 (d, J = 5.5 Hz, 0.5H), 3.56 (d, J = 5.4 Hz, 1.5H), 3.55 (d, J = 5.5 Hz, 0.5H), 3.56 (d, J = 5.4 Hz, 1.5H), 3.56 (d, J = 5.4 Hz

1.5H), 3.25 (d, J = 5.8 Hz, 0.5H), 1.39 (s, 9H), 1.29 (t, J = 7.1 Hz, 1H), 1.23 ppm (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.6$, 169.2, 167.4, 167.0, 156.2, 155.7, 153.1, 150.3, 141.6, 119.0, 80.1, 79.6, 62.4, 61.8, 50.6, 49.2, 48.8, 43.9, 43.6, 38.8, 38.5, 28.5, 14.2, 14.2 ppm. HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₁₈H₂₈N₇O₅: 422.2152, found: 422.2148.

<u>Compound 4S</u>: Compound 4S was synthesized following the known literature procedure¹. ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 7.82 (s, 1H), 5.75 (s, 1H), 5.41 (dd, *J* = 38.2, 19.2 Hz, 2H), 4.96 (s, 1.5H), 4.80 (s, 0.5H), 4.27 – 4.12 (m, 2H), 4.03 (s, 2H), 3.55 (dt, *J* = 28.7, 5.8 Hz, 2H), 3.39 – 3.19 (m, 2H), 1.38 (s, 9H), 1.22 ppm (td, *J* = 7.2, 1.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.3, 169.6, 167.1, 166.7, 159.3, 156.2, 154.1, 151.2, 143.3, 124.5, 80.2, 62.5, 61.9, 60.5, 49.2, 49.1, 48.8, 43.6, 38.8, 28.5, 21.1, 14.2, 14.2, 14.1 ppm. HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₁₈H₂₇ClN₇O₅: 456.1762, found: 456.1762.

<u>Compound 55:</u> ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) $\delta = 8.88$ (s, 1H), 7.02 (s, 0.35H), 6.96 (s, 0.65H), 5.61 (s, 1H), 4.56 (s, 1.5H), 4.41 (s, 0.5H), 4.29 – 4.14 (m, 4H), 4.03 (d, J = 3.5 Hz, 2H), 3.51 (dt, J = 12.2, 6.3 Hz, 2H), 3.31 (ddd, J = 18.3, 12.7, 6.7 Hz, 2H), 1.93 – 1.90 (m, 3H), 1.46 – 1.39 (m, 9H), 1.31 – 1.23 ppm (m, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 169.8$, 169.5, 168.0, 167.6, 164.6, 156.2, 151.4, 141.1, 110.8, 79.9, 79.5, 62.3, 61.7, 50.5, 49.1, 48.8, 47.9, 47.8, 38.8, 28.5, 14.2, 12.4 ppm. HRMS (ESI⁺), m/z calculated for (M+Na)⁺ C₁₈H₂₈N₄O₇Na: 435.1856, found: 435.1860.

<u>Compound 6S</u>: Compound 6S was synthesized following the known literature procedure³. ¹H NMR, (400 MHz, DMSO-d₆, 25°C) δ = 12.08 (d, *J* = 5.5 Hz, 1H), 11.65 (d, *J* = 7.6 Hz, 1H), 7.83 (s, 0.7H), 7.82 (s, 0.3H), 7.03 (t, *J* = 5.5 Hz, 0.7H), 6.76 (s, 0.3H), 5.13 (s, 1.4H), 4.97 (s, 0.6H), 4.42 (s, 0.6H), 4.22 (q, *J* = 7.1 Hz, 0.6H), 4.08 (q, *J* = 7.0 Hz, 2.8H), 3.50 (t, *J* = 6.5 Hz, 1.4H), 3.32 (d, *J* = 11.9 Hz, 0.6H), 3.24 (d, *J* = 6.1 Hz, 1.4H), 3.02 (d, *J* = 6.1 Hz, 0.6H), 2.84 – 2.71 (m, 1H), 1.37 (d, *J* = 6.5 Hz, 9H), 1.27 (t, *J* = 7.1 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 2H), 1.11 ppm (d, *J* = 6.7 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆, 25°C) δ = 180.2, 180.1, 169.5, 169.0, 167.0, 166.6, 155.8, 155.6, 154.9, 149.1, 149.2, 147.9, 147.9, 140.5, 140.4, 119.6, 78.2, 77.8, 61.3, 60.6, 49.1, 47.8, 46.9, 44.1, 43.9, 38.3, 37.7, 34.7, 34.7, 28.2, 18.9, 14.0 ppm. HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₂₂H₃₄N₇O₇: 508.2520, found: 508.2535.

<u>Compound 7S:</u> To a suspension of **3S** (0.42g, 1.00 mmol) in satd NaHCO₃ solution (30 mL) at 0°C was added Cbz-Cl (0.20 g, 1.2 mmol). The resulting mixture was stirred at room temperature for 8 h at. EtOAc (20 mL) was added to the reaction mixture and the organic layer was separated. Aqueous layer was further extracted with EtOAc (25x2 mL). The combined organic layer was dried over anhyd Na₂SO₄, filtered and the filtrate was evaporated to dryness in vacuo. The crude residue was purified by column chromatography [Eluent: 20-90%]

EtOAc in hexane] to afford compound **7S** (0.44 g, 80%) as hygroscopic solid. ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 8.97 (s, 1H), 8.16 (s, 1H), 7.36 – 7.18 (m, 8H), 6.36 (d, *J* = 11.2 Hz, 1H), 5.61 – 5.25 (m, 0.6H), 5.10 (s, 2H), 5.07 (d, *J* = 4.8 Hz, 2H), 4.93 (d, *J* = 5.4 Hz, 0.3H), 4.27 – 4.09 (m, 4H), 4.08 – 3.94 (m, 2H), 3.45 (dd, *J* = 24.5, 5.4 Hz, 2H), 3.29 – 3.16 (m, 2H), 1.38 – 1.29 (m, 9H), 1.25 – 1.16 ppm (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.9, 169.6, 169.5, 169.0, 159.8, 156.1, 155.6, 154.4, 153.9, 151.0, 136.1, 135.5, 128.7, 128.6, 128.6, 128.4, 128.3, 128.2, 128.1, 105.9, 80.0, 79.6, 68.1, 67.7, 67.6, 62.2, 61.8, 49.7, 48.9, 48.8, 48.3, 42.9, 38.7, 28.5, 14.2 ppm. HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₂₆H₃₄N₇O₇: 556.2520, found: 556.2511.

Compound **8S**: Compound **4S** was converted to **8S** following the procedure described in the *Eur. Pat. Appl.* **2001**, EP 1085020 A1 20010321. To a solution of **4S** (0.45 g, 1.00 mmol) in dry pyridine (10 mL) at 0°C was added isobutyrylchloride (0.13 g, 1.2 mmol). The resulting mixture was stirred at 0°C for 30 min, followed by 12 h at room temperature. Satd NaHCO₃ solution (20 mL) was added to the reaction mixture and extracted with EtOAc (25x3 mL). The combined organic layer was dried over anhyd Na₂SO₄, filtered and the filtrate was evaporated to dryness in vacuo. The crude residue was purified by flash column chromatography [Eluent: 20-70% EtOAc in hexane] to afford compound **6S** (0.44 g, 85%) as hygroscopic solid. ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 8.31 (s, 1H), 8.21 (s, 0.7H), 8.13 (s, 0.3H), 6.29 (s, 0.75H), 5.30 (d, *J* = 16.6 Hz, 0.25H), 5.14 (s, 1.7H), 4.98 (d, *J* = 12.4 Hz, 0.3H), 4.36 (s, 0.3H), 4.27 (q, *J* = 7.1 Hz, 0.3H), 4.17 (q, *J* = 7.1 Hz, 1.7H), 4.14 – 4.08 (m, 1.7H), 3.67 (t, *J* = 5.8 Hz, 1.7H), 3.55 (t, *J* = 5.8 Hz, 0.3H), 3.43 (dd, *J* = 11.9, 5.9 Hz, 1.7H), 3.29 – 3.21 (m, 0.3H), 2.77 - 2.71 (m, 1H), 1.40 (s, 2H), 1.32 (dd, *J* = 13.7, 6.6 Hz, 1H), 1.27 (d, *J* = 3.5 Hz, 4H), 1.25 (d, *J* = 1.0 Hz, 5H), 1.22 ppm (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 175.4, 169.4, 166.5, 156.6, 152.9, 151.9, 151.1, 146.0, 127.8, 79.5, 62.5, 61.7, 60.5, 50.9, 49.1, 48.8, 44.3, 43.6, 38.5, 36.7, 28.5, 28.4, 19.4, 14.3, 14.2 ppm. HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₂₂H₃₃ClN₇O₆: 526.2181, found: 526.2173.

General procedure of Boc deprotection: To an ice-cold mixture of compound (0.5 mmol in 5 mL), 2 mL TFA was added slowly and stirred for 4-6 h at rt. Completion of reaction was monitored by TLC. The volatile part of the reaction mixture was completely removed by co-evaporation with toluene and carbontetrachloride to afford TFA salts of compound **2a-d** as brown oil which were used for amide coupling reaction without further purification.

<u>Compound 2a</u>: HRMS (ESI⁺), m/z calculated for $(M+H)^+ C_{21}H_{26}N_7O_5$: 456.1995, found: 456.1985. <u>Compound 2b</u>: HRMS (ESI⁺), m/z calculated for $(M+H)^+ C_{17}H_{25}ClN_7O_4$: 426.1656, found: 426.1642. <u>Compound 2c:</u> White solid. M.p. 97-100°C; ¹H NMR, (400 MHz, DMSO-d₆, 25°C): $\delta = 12.09$ (d, J = 5.1 Hz, 1H), 11.63 (d, J = 6.1 Hz, 1H), 8.04 (s, 1H), 7.87 (s, 0.5H), 7.82 (s, 0.5H), 7.78 (s, 1H), 5.17 (s, 1H), 4.98 (s, 1H), 4.46 (s, 1H), 4.22 (q, J = 7.1 Hz, 1H), 4.10 (dd, J = 12.2, 4.9 Hz, 2H), 3.70 (t, J = 6.7 Hz, 1H), 3.52 (t, J = 6.3 Hz, 1H), 3.17 (d, J = 5.4 Hz, 1H), 2.97 (dd, J = 10.9, 5.1 Hz, 1H), 2.86 – 2.68 (m, 1H), 1.27 (t, J = 7.1 Hz, 1.5H), 1.18 (t, J = 7.1 Hz, 1.5H), 1.11 ppm (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆, 25°C): $\delta = 180.2$, 180.1, 169.5, 169.3, 168.0, 166.8, 158.9, 158.6, 158.3, 154.9, 149.3, 148.0, 147.9, 140.6, 119.4, 61.4, 60.9, 48.6, 47.7, 44.9, 44.8, 44.2, 44.1, 36.9, 36.7, 34.7, 34.7, 18.9, 18.9, 14.0, 14.0 ppm; HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₁₇H₂₆N₇O₅: 408.1995, found: 408.1992.

<u>Compound 2d</u>: HRMS (ESI⁺), m/z calculated for $(M+H)^+ C_{13}H_{21}N_4O_5$: 313.1512, found: 313.1514.

<u>Compound 9S</u>: Compound 9S was synthesized following previously mentioned literature^{2.1}H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 4.20 (q, *J* = 7.2 Hz, 2H), 3.46 – 3.39 (m, 4H), 2.88 – 2.79 (m, 2H), 2.00 (s, 1H), 1.32 – 1.24 ppm (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 172.2, 60.9, 51.5, 50.6, 48.2, 14.3 ppm; IR: v_{N3} = 2101 cm⁻¹; HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₆H₁₃N₄O₂: 173.1038, found: 173.1044.

<u>Compound 4</u>: Compound 4 was synthesized following the reported procedure.⁴ ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) δ = 7.24 (dt, *J* = 6.4, 4.1 Hz, 3H), 7.18 – 7.02 (m, 6H), 6.91 (t, *J* = 18.1 Hz, 2H), 6.54 (s, 1H), 6.28 (s, 1H), 4.84 (d, *J* = 5.9 Hz, 1H), 4.72 – 4.54 (m, 1H), 4.20 (d, *J* = 6.0 Hz, 1H), 3.92 (ddd, *J* = 21.0, 11.9, 9.0 Hz, 1H), 3.77 (dd, *J* = 17.5, 2.4 Hz, 1H), 3.14 (s, 1H), 2.99 – 2.76 (m, 3H), 2.08 (t, *J* = 2.5 Hz, 1H), 1.25 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 170.3, 155.9, 136.0, 129.4, 129.3, 129.0, 128.8, 81.02, 79.2, 71.3, 56.3, 53.4, 37.8, 37.5, 29.2, 28.3, 28.2 ppm. HRMS (ESI⁺), m/z calculated for (M+Na)⁺ C₂₆H₃₁N₃O₄Na: 472.2212, found: 472.2213.

General procedure of coupling azide backbone with nucleobase acetic acid:

- 1. To a mixture of nucleobase acetic acid (0.5 mmol) in dry DMF (5mL), NMM (0.5 mmol) and IBCF (0.5 mmol) were added slowly and cooled to −50 °C. To the white semisolid mass obtained after 0.5 h, compound **9S** (0.4 mmol) dissolved in dry DMF (1.5 mL) and disopropylethylamine (DIPEA) (2.0 mmol) were slowly added at 0 °C. Reaction mixture was maintained at 0 °C for 0.5 h and then kept at rt for 6 h. Brine solution was added and extracted with EtOAc (3x50 mL). Combined organic layer was dried over anhyd Na₂SO₄ and evaporated to dryness. Crude mass thus obtained was purified by column chromatography.
- 2. N^2 -(Isobutyryl)-9-(carboxymethyl)guanine was coupled with the azide backbone **9S** following the procedure mentioned for compound **3a-d** (main manuscript) to afford **5c** in good yield (75%).

<u>Compound 5a</u>: ¹H NMR, (400 MHz, CDCl₃, 25°C, TMS) $\delta = 8.83$ (d, J = 3.0 Hz, 1H), 8.24 (s, 1H), 5.32 (s, 1H), 5.09 (s, 1H), 4.37 (s, 1H), 4.32 (q, J = 7.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 1H), 4.14 (s, 1H), 3.74 – 3.70 (m, 1H), 3.67 (d, J = 4.8 Hz, 1H), 3.60 – 3.52 (m, 2H), 1.43 (d, J = 2.7 Hz, 18H), 1.36 (t, J = 7.1 Hz, 1.5H), 1.26 ppm (t, J = 7.1 Hz, 1.5H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 168.9$, 168.7, 166.7, 166.5, 153.58, 153.5, 152.1, 150.4, 150.3, 150.3, 146.1, 145.9, 128.3, 83.8, 83.8, 62.5, 61.7, 51.1, 50.0, 49.9, 48.7, 48.4, 48.1, 44.0, 43.9, 27.8, 14.3, 14.2 ppm; IR: $v_{N3} = 2103$ cm⁻¹; HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₂₃H₃₄N₉O₇: 548.2581, found: 548.2587.

<u>Compound 5b</u>: ¹H NMR, (400 MHz, CD₃OD + DMSO-d₆, 2:1, 25°C) δ = 8.22 (t, *J* = 12.7 Hz, 1H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.31 (ddd, *J* = 22.2, 21.7, 7.0 Hz, 5H), 5.36 (s, 1H), 5.19 (s, 1H), 5.12 (d, *J* = 17.3 Hz, 1H), 4.20 (dd, *J* = 14.3, 7.1 Hz, 1H), 4.12 – 3.93 (m, 3H), 3.66 (d, *J* = 11.7 Hz, 3H), 3.53 – 3.42 (m, 1H), 3.38 (dd, *J* = 13.7, 8.0 Hz, 1H), 1.25 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.13 ppm (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD + DMSO-d₆, 2:1) δ = 170.1, 168.8, 168.4, 153.2, 153.1, 152.8, 150.4, 146.2, 137.3, 129.4, 129.1, 129.0, 67.8, 62.7, 61.9, 61.0, 50.7, 50.6, 49.9, 49.4, 45.1, 45.1, 14.4 ppm; IR: v_{N3} = 2102 cm⁻¹; HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₂₁H₂₄N₉O₅: 482.1900, found: 482.1897.

<u>Compound 5c</u>: ¹H NMR (400 MHz, DMSO-d₆, 25°C) δ = 12.08 (s, 1H), 11.65 (s, 0.3H), 11.62 (s, 0.7H), 7.88 (s, 0.6H), 7.83 (s, 0.4H), 5.20 (s, 1.3H), 4.99 (s, 0.7H), 4.48 (s, 0.7H), 4.22 (q, *J* = 7.1 Hz, 0.7H), 4.13 – 4.05 (m, 2.6H), 3.73 – 3.62 (m, 2.5H), 3.50 – 3.41 (m, 1.5H), 2.82 – 2.71 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 2H), 1.12 (s, 3H), 1.10 ppm (s, 3H); ¹³C NMR (400 MHz, DMSO-d₆, 25°C) δ = 180.1, 169.5, 168.9, 167.3, 166.9, 154.9, 149.3, 147.9, 140.7, 140.5, 119.6, 61.3, 60.6, 49.0, 48.3, 48.0, 46.8, 46.4, 44.2, 34.6, 18.9, 14.0 ppm; IR: v_{N3} = 2105 cm⁻¹; HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₁₇H₂₄N₉O₅: 434.1900, found: 434.1903.

<u>Compound 5d</u>: ¹H NMR, (400 MHz, DMSO-d₆, 25°C): δ = 11.29 (s, 1H), 7.36 (d, J = 1.2 Hz, 0.7H), 7.29 (d, J = 1.2 Hz, 0.3H), 4.71 (s, 1.3H), 4.50 (s, 0.7H), 4.37 (s, 0.7H), 4.18 (q, J = 7.1 Hz, 0.8H), 4.13 – 4.03 (m, 2.5H), 3.63 (t, J = 5.4 Hz, 1.3H), 3.56 (t, J = 5.5 Hz, 1.3H), 3.50 – 3.46 (m, 0.7H), 3.43 (t, J = 5.3 Hz, 0.7H), 1.75 (d, J = 1.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 1H), 1.18 ppm (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆, 25°C): δ = 169.3, 168.9, 168.0, 167.6, 164.4, 164.4, 151.0, 142.2, 142.0, 108.2, 108.1, 61.2, 60.6, 49.1, 48.3, 48.1, 47.9, 46.8, 46.3, 14.0, 14.0, 11.9 ppm; IR: v_{N3} = 2103 cm⁻¹; HRMS (ESI⁺), m/z calculated for (M+H)⁺ C₁₃H₁₇N₆O₅: 339.1417, found: 339.1420.

Figure S3: (A) 1 H-NMR and (B) 13 C-NMR spectra of 3S

S-11

Figure S5: (A) ¹H-NMR and (B) ¹³C-NMR spectra of 5S

S-13

(**V**) - 000

Figure S12: (A) ¹H-NMR and (B) ¹³C-NMR spectra of peptide 3a

Figure S17: FTIR spectrum of 9S

S-25

Figure S20: (A) ¹H-NMR and (B) ¹³C-NMR spectra of $A^{\text{NHCbz}}-N^9$ -acetic acid

Figure S22: (A) ¹H-NMR and (B) ¹³C-NMR spectra of Thymine-1-acetic acid

Figure S23: (A) ¹H-NMR and (B) ¹³C-NMR spectra of 5a

Figure S24: FTIR spectrum of 5a

Figure S26: FTIR spectrum of 5b

Figure S28: FTIR spectrum of 5c

(A)

1

Figure S30: FTIR spectrum of 5d

S-38

S-39

Figure S33: (A) ¹H-NMR and (B) ¹³C-NMR spectra of peptide 6c

(**y**) (**y**)

S-44

Figure S39: FTIR spectrum of 8d

Figure S41: FTIR spectrum of 9

S-49

Scheme S3: Synthesis of nucleopeptides through solid support.

[Solvent A: 95% water, 4.5% acetonitrile, 0.5% TFA; Solvent B: 49.5% water, 50% acetonitrile, 0.5% TFA]

Figure S43: (A) HPLC trace ($\lambda = 260$ nm), (B) MALDI Mass and (C) UV spectrum (concentration = 1.34 mM) after purification of **NP1** (H-Phe-Phe-gly-A-*aeg*-NH₂).

[Solvent A: 95% water, 4.5% acetonitrile, 0.5% TFA; Solvent B: 49.5% water, 50% acetonitrile, 0.5% TFA]

Figure S44: (A) HPLC trace ($\lambda = 260$ nm), (B) MALDI Mass and (C) UV spectrum (concentration = 0.23 mM) after purification of **NP2** (H-Phe-Phe-gly-C-*aeg*-NH₂).

[Solvent A: 95% water, 4.5% acetonitrile, 0.5% TFA; Solvent B: 49.5% water, 50% acetonitrile, 0.5% TFA]

Figure S45: (A) HPLC trace ($\lambda = 260$ nm), (B) MALDI Mass and (C) UV spectrum (concentration = 0.44 mM) after purification of **NP3** (H-Phe-Phe-gly-G-*aeg*-NH₂).

[Solvent A: 95% water, 4.5% acetonitrile, 0.5% TFA; Solvent B: 49.5% water, 50% acetonitrile, 0.5% TFA]

Figure S46: (A) HPLC trace ($\lambda = 260$ nm), (B) MALDI Mass and (C) UV spectrum (concentration = 0.92 mM) after purification of **NP4** (H-Phe-Phe-gly-T-*aeg*-NH₂).

Figure S47: MALDI-Tof data of NP1 and NP4 duplex

Figure S48: ESI mass data of NP1 and NP4 duplex

Figure S49: MALDI-Tof data of NP2 and NP3 duplex

Figure S50: ESI mass data of NP2 and NP3 duplex

Figure S51: PXRD patterns of representative nucleopeptides (A) **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (B) **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt), (C) **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt), (D) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt), (E) **7d** (H-Phe-Phe-*tz*-T-*aeg*-OEt) and (F) **8d** (Boc-Phe-Phe-*tz*-T-*aeg*-OH).

Figure S52: FTIR spectra of peptide (A) **3a** (Boc-Phe-Phe-*am*-A^{NHCbz}-*aeg*-OEt), (B) **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (C) **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt), (D) **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt), (E) **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt), (F) **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt), (G) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt) and (H) **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt).

Figure S53: Images captured at 0.5 second for contact angle measurement of (A) bare silicon-wafer, (B) peptide **3a** (Boc-Phe-Phe-*am*-A^{NHCbz}-*aeg*-OEt), (C) peptide **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (D) peptide **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt), (E) peptide **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt), (F) peptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)}-*aeg*-OEt), (G) peptide **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt), (H) peptide **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt), (I) peptide **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt), (J) peptide **7d** (H-Phe-Phe-*tz*-T-*aeg*-OEt), (K) peptide **8d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt) and (L) peptide **9** (Boc-Phe-Phe-*tz*-*aeg*-OEt).

Sample/Surface	CA (in degree) ^a	ΔCA (in degree)
Bare silicon-wafer	62 ± 1	-
Peptide 3a Boc-Phe-Phe- <i>am</i> -A ^{NHCbz} - <i>aeg</i> -OEt	73 ± 2	+11
Peptide 3b Boc-Phe-Phe-am-6-Cl-G ^{NHiBu} -aeg-OEt	84 ± 2	+22
Peptide 3c Boc-Phe-Phe-am-G ^{NHiBu} -aeg-OEt	95 ± 3	+33
Peptide 3d Boc-Phe-Phe-am-T-aeg-OEt	74 ± 2	+12
Peptide 6a Boc-Phe-Phe- <i>tz</i> -A ^{N(Boc)2} - <i>aeg</i> -OEt	88 ± 2	+16
Peptide 6b Boc-Phe-Phe- <i>tz</i> -A ^{NHCbz} - <i>aeg</i> -OEt	77 ± 2	+15
Peptide 6c Boc-Phe-Phe- <i>tz</i> -G ^{NHiBu} - <i>aeg</i> -OEt	94 ± 3	+32
Peptide 6d Boc-Phe-Phe-tz-T-aeg-OEt	75 ± 1	+13
Peptide 7d H-Phe-Phe-tz-T-aeg-OEt	70 ± 2	+8
Peptide 8d Boc-Phe-Phe-tz-T-aeg-OH	81 ± 1	+19
Peptide 9 Boc-Phe-Phe-tz-aeg-OEt	71 ± 2	+9

Table S1: Contact angle (CA) measured for peptides on glass surface

^aData are the mean \pm SD (n=4)

Figure S54: SEM images of peptide (A) **3a** (Boc-Phe-Phe-*am*-A^{NHCbz}-*aeg*-OEt), (B) **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (C) **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt), (D) **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt). (E) **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt), (F) **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt), (G) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt) and (H) **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt).

Figure S55: EDX images of (A) peptide **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt), and (B) peptide **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt).

Figure S56: AFM topography images of (A) **3a** (Boc-Phe-Phe-*am*-A^{NHCbz}-*aeg*-OEt), (B) **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (C) **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt), (D) **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt). (E) **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt), (F) **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt), (G) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt), (H) **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt).

Figure S57: Height profiles diagrams of peptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt) at different places of nanoparticles obtained from AFM.

Figure S58: HRTEM images of (A) **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt), (B) **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}*aeg*-OEt), (C) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt), (D) **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt), (E) **3a** (Boc-Phe-Phe*am*-A^{NHCbz}-*aeg*-OEt), (F) **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (G) **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt) and (H) **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt).

Figure S59: DLS spectra of fresh peptide solution of (A) **3a** (Boc-Phe-Phe-*am*-A^{NHCbz}-*aeg*-OEt), (B) **3b** (Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt), (C) **3c** (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt), (D) **3d** (Boc-Phe-Phe-*am*-T-*aeg*-OEt). (E) **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt) (PDI = 0.03), (F) **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt) (PDI = 0.07), (G) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt), (H) **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt) and after 10 days incubation of (I) **6a** (PDI = 0.34), (J) **6b** (PDI = 0.57).

Figure S60: SEM images of peptide **6a** (Boc-Phe-Phe-*tz*- $A^{N(Boc)_2}$ -*aeg*-OEt) (A) at pH 2, (B) at pH 7, (C) at pH 10, (D) after heating at 100 °C for 4 h, (E) after incubation with proteinase K and (F) SEM image of proteinase K.

Figure S61: Effect of counter anion on self-assembled morphologies for nucleopeptide 7c and 7d in presence of trifluoroacetate (A, B) and chloride (C, D) respectively through SEM images.

Figure S62: TGA of (A) peptide **3b** Boc-Phe-Phe-*am*-6-Cl-G^{NHiBu}-*aeg*-OEt, (B) peptide **6b** Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt, and (C) peptide **6d** Boc-Phe-Phe-*tz*-T-*aeg*-OEt.

Solvent gradient with respect to solvent B [Solvent A: 95% water, 4.5% acetonitrile, 0.5% TFA; Solvent B: 49.5% water, 50% acetonitrile, 0.5% TFA]

Figure S63: (A) HPLC Trace; (B) solvent gradient and (C) MALDI Mass for purified peptide 7d.

[Solvent A: 95% water, 4.5% acetonitrile, 0.5% TFA; Solvent B: 49.5% water, 50% acetonitrile, 0.5% TFA]

Figure S64: (A) HPLC Trace; (B) solvent gradient and (C) MALDI Mass for proteinase K incubated peptide 7d
To examine the proteolytic stability, nucleopeptides 3c (Boc-Phe-Phe-*am*-G^{NHiBu}-*aeg*-OEt) and 6c (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt) were incubated with another proteolytic enzyme Chymotrypsin in HEPES buffer at physiological temperature (35 °C) and pH (7.5) following the literature procedure⁵. Then, mass spectra were taken at different time intervals to monitor if there is any change in the mass spectrum. No change of the mass spectrum was observed even after 24 h of incubation.

Figure S65: MALDI Mass for Chymotrypsin incubated peptide 3c (A, B) and 6c (C, D) after 12 h and 24 h respectively.

Figure S66: Solvent dependent morphology in SEM images of peptide **6a** (Boc-Phe-Phe-*tz*- $A^{N(Boc)_2}$ -*aeg*-OEt): (A) in THF, (B) in MeOH, (C) in CHCl₃, (D) in DCM, (E) in 1:1 HFIP and water, (F) in 1:1 MeOH and water, (G) in 1:1 CHCl₃ and MeOH, and (H) in 1:1 THF and water.

Figure S67: Solvent dependent morphology in SEM images of nucleopeptide **3c** (Boc-Phe-Phe-*am*-G^{NHibu}-*aeg*-OEt) in (A) THF, (B) MeOH, (C) CHCl₃, and **7d** (Boc-Phe-Phe-*am*-G^{NHibu}-*aeg*-OEt) in (D) THF, (E) MeOH and (F) CHCl₃.

 SEM images clearly shows that only in presence of MeOH (which was not anhydrous) ordered spherical morphology was exhibited by nucleopeptide 3c. Other neat solvents failed to produce good selfassembled morphologies After 1 day

After 5 days

After 10 days

Figure S68: Time dependent morphologies observed through SEM for nucleopeptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt) (FigA-C), **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt) (FigD-F) and AFM for nucleopeptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt) (FigG-I), **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt) (FigJ-L) respectively.

Figure S69: Absorbance values measured from turbidity assay of nucleopeptides at (A) 405 nm and (B) 570 nm.

Table S2: Absorbance of nucleopeptides observed in turbidity assay at 405 and 570 nm		
Nucleopeptides	Abs. in turbidity	Abs. in turbidity
	assay at 405 nm ^a	assay at 570 nm ^a
Peptide 3a Boc-Phe-Phe- <i>am</i> -A ^{NHCbz} - <i>aeg</i> -OEt	1.03 ± 0.02	0.93 ± 0.02
Peptide 3b Boc-Phe-Phe-am-6-Cl-G ^{NHiBu} -aeg-OEt	0.07 ± 0.01	0.05 ± 0.01
Peptide 3c Boc-Phe-Phe- <i>am</i> -G ^{NHiBu} - <i>aeg</i> -OEt	0.22 ± 0.01	0.15 ± 0.01
Peptide 3d Boc-Phe-Phe-am-T-aeg-OEt	0.07 ± 0.01	0.05 ± 0.01
Peptide 6a Boc-Phe-Phe- <i>tz</i> -A ^{N(Boc)₂-<i>aeg</i>-OEt}	0.96 ± 0.03	0.85 ± 0.02
Peptide 6b Boc-Phe-Phe- <i>tz</i> -A ^{NHCbz} - <i>aeg</i> -OEt	0.51 ± 0.02	0.47 ± 0.02
Peptide 6c Boc-Phe-Phe-tz-G ^{NHiBu} -aeg-OEt	0.21 ± 0.01	0.09 ± 0.01
Peptide 6d Boc-Phe-Phe-tz-T-aeg-OEt	0.09 ± 0.01	0.08 ± 0.01
Control	0.04 ± 0.01	0.04 ± 0.01

^aData are the mean \pm SD (n=4)

Figure S70: Confocal microscope images of fluorescent dye encapsulated nucleopeptide (A) **6a** (Boc-Phe-Phe*tz*-A^{N(Boc)2}-*aeg*-OEt), (B) **6b** (Boc-Phe-Phe-*tz*-A^{NHCbz}-*aeg*-OEt), (C) **6c** (Boc-Phe-Phe-*tz*-G^{NHiBu}-*aeg*-OEt) and (D) **6d** (Boc-Phe-Phe-*tz*-T-*aeg*-OEt).

Figure S71: The increasing fluorescence intensity of the solution outside the dialysis tube containing **CF** encapsulated peptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt), after the addition of 3 eq. of (A) dicationic peptide (Boc-Lys-Lys-OMe) into dialysis tube. (B) Fluorescence emission spectra of carboxyfluorescein showing increasing intensity after the addition of dicationic peptide into **CF** encapsulated peptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt) (at 517 nm, $\lambda_{ex} = 417$ nm).

Figure S72: Confocal microscope images of fluorescent drug doxorubicin encapsulated nucleopeptide **6a** (Boc-Phe-*tz*-A^{N(Boc)}-*aeg*-OEt) (emission at 590 nm, $\lambda ex = 485$ nm).

Figure S73: The increasing fluorescence intensity of the solution outside the dialysis tube containing Doxorubicin encapsulated peptide **6a** (Boc-Phe-Phe-*tz*-A^{N(Boc)2}-*aeg*-OEt), after the addition of 3 eq. of dicationic peptide (Boc-Lys-Lys-OMe) into dialysis tube (emission at 595 nm, $\lambda ex = 480$ nm).

Cyclic voltammetry:

Electrochemical Analysis was done in the Biologic VMP3 multichannel potentiostat. A standard three-electrode cell consisting of a Toray carbon Paper having 1 cm² as the working electrode, Ag/AgCl (sat. KCl) as the reference electrode and a Pt foil as the counter electrode were used for electrochemical measurements. The solution were purged with Ar during the experiments. The potential values are in volt (V) vs. Ag/AgCl scale. The electrolyte was a standard inorganic solution of 0.1M Potassium Phosphate Buffer electrolytes at pH=7.4 and 0.1M KCl. All working electrodes had an identical geometric area of 1.00 cm². The capacitance was evaluated from experimental cyclic voltammetric profile, according to the following equation:

$$C = \frac{A_T/2}{\Delta V \, \mathrm{x} \, V_{SR} \, \mathrm{x} \, A_e}$$

C = Total capacitance in millifarad per cm²(or in mF / cm²) $A_T =$ Total area under the curve of cyclic voltammetry in milliampere (or in mA) $V_{SR} =$ Scan rate (50 mV/s) $A_e =$ Area of the toray carbon paper electrode (1 cm²) $\Delta V =$ Potential window (-0.300 V to 0.900 V *i.e.* [0.900 + 0.300] V = 1.2 V)

All solutions were prepared using triply distilled water and the cell temperature was maintained at 27 °C. Currents are normalized with respect to geometric area (1 cm²). All the electrolytic solutions were prepared by 0.1M Potassium Phosphate Buffer electrolytes at pH=7.4 and 0.1M KCl. Working electrodes were made by drop casting a suspension of those peptides (2 mg/400 μ L in a 10 wt% aqueous dispersion of PTFE) on a Toray carbon paper electrode.

Table S3: Capacitance values of peptide mod	dified Torey	carbon electrodes
Pontidos used for electrode modification	Canacitan	$ce(\mu E/cm^2)$

Peptides used for electrode modification	Capacitance (µF/cm ²)
Boc-Phe-Phe- tz -A ^{N(Boc)₂} -aeg-OEt (6a)	260.0
Boc-Phe-Phe- <i>tz</i> -A ^{NHCbz} -aeg-OEt (6b)	205.8
Boc-Phe-Phe- <i>tz</i> -G ^{NHiBu} -aeg-OEt (6c)	617.0
Boc-Phe-Phe-tz-T-aeg-OEt (6d)	342.0
Boc-Phe-Phe-tz-aeg-OEt (9)	500.0
None (unmodified electrode)	90.0

Figure S74: Cyclic voltammograms of peptide **6a** (Boc-Phe-Phe-*tz*- $A^{N(Boc)_2}$ -aeg-OEt) supported Toray Carbon electrode in 0.1M potassium phosphate buffer electrolytes at pH=7.4 and 0.1M KCl (A) at different scan rate from 40 mV/s to 100mV/s; **Inset:** Scan rate effect at different scan rate from 40 mV/s to 100mV/s; (B) at a scan rate of 50mV/s of 1st and 500th cycles; (C) at a scan rate of 50 mV/s compared to bare electrode.

Figure S75: Cyclic voltammograms of peptide **6b** (Boc-Phe-Phe-*tz*- A^{NHCbz} -aeg-OEt) supported Toray Carbon electrode in 0.1M potassium phosphate buffer electrolytes at pH=7.4 and 0.1M KCl (A) at different scan rate from 40 mV/s to 100mV/s; **Inset:** Scan rate effect at different scan rate from 40 mV/s to 100mV/s; (B) at a scan rate of 50mV/s of 1st and 500th cycles; (C) at a scan rate (SR) of 50 mV/s compared to bare electrode.

Figure S76: Cyclic voltammograms of peptide **6c** (Boc-Phe-Phe-*tz*- G^{NHiBu} -aeg-OEt) supported Toray Carbon electrode in 0.1M potassium phosphate buffer electrolytes at pH=7.4 and 0.1M KCl (A) at different scan rate from 10 mV/s to 100mV/s; **Inset:** Scan rate effect at different scan rate from 10 mV/s to 100mV/s; (B) at a scan rate of 50mV/s of 1st and 500th cycles; (C) at a scan rate of 50 mV/s compared to bare electrode.

Figure S77: Cyclic voltammograms of peptide **6d** (Boc-Phe-Phe-*tz*-T-aeg-OEt) supported Toray Carbon electrode in 0.1M potassium phosphate buffer electrolytes at pH=7.4 and 0.1M KCl (A) at different scan rate from 40 mV/s to 100mV/s; **Inset:** Scan rate effect at different scan rate from 40 mV/s to 100mV/s; (B) at a scan rate of 50mV/s of 1st and 500th cycles; (C) at a scan rate of 50 mV/s compared to bare electrode.

Figure S78: Cyclic voltammograms of peptide **9** (Boc-Phe-Phe-*tz*-aeg-OEt) supported Toray Carbon electrode in 0.1M potassium phosphate buffer electrolytes at pH=7.4 and 0.1M KCl (A) at different scan rate from 10 mV/s to 100mV/s; **Inset:** Scan rate effect at different scan rate from 10 mV/s to 100mV/s; (B) at a scan rate of 50mV/s of 1st and 500th cycles; (C) at a scan rate of 50 mV/s compared to bare electrode.

References:

1. Meltzer, P. C.; Liang A. Y.; Matsudaira, P. Peptide Nucleic Acids: Synthesis of Thymine, Adenine, Guanine, and Cytosine Nucleobases. J. Org. Chem. **1995**, 60, 4305-4308.

2. Efthymiou, T. C.; Desaulniers, J-P. Synthesis and properties of oligonucleotides that contain a triazole-linked nucleic acid dimer. *J. Heterocyclic Chem.* **2011**, *48*, 533-539.

3. Englund, E. A.; Xu, Q.; Witschi, M. A.; Appella, D. H. PNA-DNA Duplexes, Triplexes, and Quadruplexes Are Stabilized with trans-Cyclopentane Units. *J. Am. Chem. Soc.* **2006**, *128*, 16456-16457.

4. Datta, D.; Tiwari, O.; Ganesh, K. N. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines. *Nanoscale* **2018**, *10*, 3212-3224.

5. Baral, A.; Roy, S.; Ghosh, S.; Hermida-Merino, D.; Hamley, I. W.; Banerjee, A. A Peptide-Based Mechanosensitive, Proteolytically Stable Hydrogel with Remarkable Antibacterial Properties. *Langmuir* **2016**, *32*, 1836-1845.