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figures. Additional figures display exploration of behavior of the model not included in the
main article.

1 Mathematical formulation of 0↔1 transition:

ATP binding and SMC head engagement

1.1 Nucleotide binding kinetics

ATP association and dissociation can be described using standard binding kinetic models
[1]. Starting from their apo states, the two ATP-binding sites will bind and release ATP at
rates typical of ATP-binding enzymes, with an on-rate kon,ATP = γATP[ATP] where γ is the
reaction rate per concentration (units of M−1s−1) and where [ATP] is in M (mol/litre). For
diffusion-limited binding reactions, γATP has an upper limit of ≈ 109 M−1 s−1 and in practice
ATP-binding enzymes typically have ATP binding rates in the range of γ ≈ 106 M−1s−1 [2].
The ATPs can unbind at a rate koff,ATP, which one can expect to be in the range of 103 s−1 for
ATPases with ATP binding site affinities (Kd,0,ATP) in the mM range, such as topo II [2]. We
take the dissociation constant for an ATP binding site to be Kd,0,ATP = koff,ATP/γATP = 0.2
mM. Available data indicates ATP binding affinity Kd,0,ATP ≈mM for bsSMC [3].

If ADP is present, it can also bind and unbind at rates kon,ADP = γADP[ADP] and koff,ADP;
similar rates pertain for inorganic phosphate (Pi). In terms of these rates, the dissociation
constant for ADP is Kd,0,ADP = koff,ADP/γADP. This, and the corresponding affinity for
phosphate, are likely less than those for ATP. The dashed box on the left of Fig. 5a,
main text is meant to include 16 states corresponding to each Walker A site being apo, or
ATP-, ADP- or ADP+Pi- bound. The total probability of all these states is P0. We set
Kd,0,ADP = Kd,0,Pi = 20 mM.
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1.2 Equilibrium probabilities of state 0 substates

In the model state 0 is actually a composite of all ATP/ADP/Pi-bound states of the SMC
in conformational state 0 (Pi refers to inorganic phosphate). We treat this group of states
as pre-equilibriated since the rates for ATP/ADP/Pi binding will be much faster than the
adjacent SMC/DNA-conformational-mechanical transitions into SMC states 1 and 3.

The forward rate from state 0 to 1 thus includes, as a factor, the equilibrium probability
of having two ATPs bound to an SMC in conformational state 0:

p0,2ATP =

(
[ATP]/Kd,0,ATP

1 + [ATP]/Kd,0,ATP + [ADP]/Kd,0,ADP + [ADP][Pi]/(Kd,0,ADPKd,0,Pi)

)2

(1)

Similarly, the “reverse” transition from state 0 to 3 takes place through a substate which is
the complex of SMC with two molecules of ADP and two molecules of inorganic phosphate,
with probability:

p0,2ADP,2Pi =

(
[ADP][Pi]/(Kd,0,ADPKd,0,Pi)

1 + [ATP]/Kd,0,ATP + [ADP]/Kd,0,ADP + [ADP][Pi]/(Kd,0,ADPKd,0,Pi)

)2

(2)

where Kd,0,ATP is the dissociation constant of the complex between the SMC and ATP,
Kd,0,ADP is the dissociation constant of the complex between the SMC and ADP, and Kd,0,Pi

is the dissociation constant of the complex between the SMC and Pi, all for SMC conforma-
tional state 0.

1.3 SMC head engagement kinetics

Given pre-equilibration of nucleotide binding, the transition from the block of 0 states to the
1 state occurs at rate k0 = p0,2ATPkeng, where keng is the rate at which engagement occurs
once two ATPs are bound. The rate k0 connects ATP concentration to forward cycling: k0

increases linearly as [ATP] is increased from zero, and saturates at high [ATP]. We take
keng = 2 s−1, i.e. a conformational-change time on the order of 500 msec.

We presume that the reverse head-opening rate kdis is slower: k′0 = kdis = kenge
−βεeng .

Here εeng = 4kBT indicates the head engagement (“sticking”) free energy, since the ratio
of the forward to reverse engagement rates is related to the free energy difference between
engaged and disengaged states through a Boltzmann factor. This type of free energy ac-
counting of reverse relative to forward rates will recur as we construct the reaction cycle and
is essential to understanding its thermodynamics.

2 Mathematical formulation of 1↔2 transition:

Reversible DNA loop capture

We consider loop capture by bsSMC using established mathematical models from the DNA
looping and cyclization literature. The most likely size of loop ` that will form at low values
of fDNA < 0.1 piconewtons (pN) will be comparable to ` ≈ 200 nm which is the peak of the
DNA cyclization J-factor distribution [5]. At larger forces, competition between force and
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bending will select a loop size of ` =
√
DkBTA/fDNA, where D is a numerical constant equal

to about 14; the energy of this loop is εloop = 2
√
kBTDAf [6] which takes into account the

mechanical work done against DNA tension fDNA. A suitable (free) energy and associated
loop size describing the loop including the low-force limit is

εloop = 2
√
DkBTA(f0 + fDNA)

` =
√
DkBTA/(f0 + fDNA) (3)

where f0 = 0.1 pN provides a sensible low-force limit roughly corresponding to zero-force
cyclization. As force is increased, the optimal loop size decreases, and loop energy increases.
We take a fraction φ (0 < φ < 1) of the energy εloop as the energy barrier for the forward
reaction (1→2), indicating k1 = k exp[−βφεloop]. Here k is a thermal fluctuation rate for an
object of d = 10 nm length, or k = kBT/(ηd

3); we take φ = 1/2.
We need to take into account the fact that if the most probable-sized loop considered

above is too small (i.e., if the force is large), it will not be able to be captured by the SMC.
To include this effect we add a DNA loop-capture probability p = 1/(1 + e(`0−`)/δ) with
δ = 30 nm and `0 = 80 nm, to shut off the loop-capture rate when ` drops below the lower
limit of loop size compatible with capture by the SMC, by more than δ:

k1 = kpe−βφεloop (4)

Although simple, over a range of forces up to a few pN this model describes the barrier loop
energy cost increase and loop size decrease as fDNA is increased, including the inability of the
SMC to capture loops which are smaller than `0. The numerical parameter D is determined
by the loop bending geometry, so the precise details of the DNA conformation captured by
an SMC complex can be modeled by varying the value of D, `0 and δ and φ.

Reversal of loop capture can occur as a result of thermal breaking of the upper-compartment
DNA-SMC interaction, i.e., k′1 ∝ e−βεbind . This takes into account the binding energy of the
SMC to the DNA loop, but we must also include the remainder of the loop-formation free
energy which now plays the role of a tension-dependence driving the DNA loop off the
complex:

k′1 = kpe−β[εbind−(1−φ)εloop] (5)

where εbind is the energy of DNA-loop-binding; we take εbind = 15kBT . The bending energy
ensures that the ratio of the forward and reverse rates gives the Boltzmann factor describing
the relative probabilities of states 1 and 2 (with ATP bound), corresponding to a free energy
difference F2,ATP − F1 = εloop − εbind.

3 Mathematical formulation of 2↔3 transition:

ATP hydrolysis, phosphate release, and loop release

After setting the ATP hydrolysis rate, thermodynamics dicates the synthesis rate ksyn: the
free energy change as one goes around the cycle of Figs. 4a and 5, main text, inferred from
the net forward and reverse chemical rates must equal that released by ATP hydrolysis. The

3



relative rates of ATP synthesis and hydrolysis must satisfy:

ksyn

khyd

=
Kd,2,ADPKd,2,Pi

Kd,2,ATP

[ATP]eq

[ADP]eq[Pi]eq

(6)

where the Kd,2,X refer to the binding affinities of species X to the SMC in protein state
2. These affinities are in general different from the Kd,0,X (the protein is in a different
conformation) but they are likely similar in order of magnitude (the Walker A nucleotide
binding site is in similar conformation).

Eq. (6) has a simple interpretation: the free energy released by ATP hydrolysis in solution
(given by the log of the ratio of equilibrium concentrations) is slightly shifted by binding
free energy (the log of the ratio of the affinities). Under almost any conceivable experiment
conditions we will have ksyn � khyd since the solution equilibrium of ATP is so strongly
skewed towards hydrolysis, as will be shown in Sec. 5. A kinetic derivation of Eq. (6) is
given in Sec. 3.2.

We take Kd,2,X = Kd,0,X for X = ATP,ADP,Pi due to the lack of detailed information
and also since there is relatively little effect of their precise values on the results of the model.

In the above, [Pi] and [Pi]eq are concentrations and equilibrium concentrations of phos-
phate); phosphate is involved in ATP synthesis/hydrolysis, and affects ATP/ADP free energy
balance. Note that we suppose that phosphate release/binding is coincident with ADP re-
lease and binding. If phosphate release/binding is indicated by future experimental data to
be at a different point in the cycle of Fig. 5a, main text, than ADP release, it is straightfor-
ward to relocate, but this will have no effect under in-vivo-like reactions conditions where
the rate of ATP synthesis (which involves phosphate binding and therefore [Pi]) are tiny
relative to that of hydrolysis.

Once hydrolysis has occurred, we presume a forward “opening” rate kopen = 200 sec−1.
Given that this involves opening and relaxation of the DNA loop and release of DNA binding,
we write kclose = kopene

β[εbind−εloop−εopen] where εopen = 10kBT is the additional free energy
driving the SMC-DNA-ADP complex towards the open state.

3.1 Elimination of ATP hydrolysis intermediates

Our model incorporates hydrolysis of two ATP molecules per SMC catalytic cycle. In steady
state we can simplify the model by “integrating out” the two substates of protein state 2
with one or two ATPs hydrolysed to ADP and Pi, [2; ATP,ADP ·Pi] and [2; 2ADP · 2Pi], as
follows. We will also take care to account for the inorganic phosphate Pi, which we assume
to be released along with ADP. The rate equations for the various species are

d[2; ATP,ADP · Pi]

dt
= −(ksyn + khydr)[2; ATP,ADP · Pi] +

+2khydr[2; 2ATP] + ksyn[2; 2ADP · Pi]

d[2; 2ADP · 2Pi]

dt
= −(kopen + 2ksyn)[2; 2ADP · 2Pi]

+khydr[2; ATP,ADP · Pi] + kclose[3,ADP] (7)
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At steady state, the solution of these equations is

[2; ATP,ADP · Pi] =
2khydr(2ksyn + kopen)

∆
[2; 2ATP] +

2ksynkclose

∆
[3; ADP]

[2; 2ADP · 2Pi] =
4(khydr)

2

∆
[2; 2ATP] +

kclose(khydr + ksyn)

∆
[3; ADP]

(8)

where ∆ = (2ksyn + kopen)(ksyn + khydr)− ksynkhydr.
By substituing these expressions in the rate equations for [2; 2ATP] and [3; ADP] we find

new effective transtion rates between them:

k2;2ATP→3;2ADP = k2 =
2(khydr)

2kopen

∆

k3;2ADP→2;2ATP = k′2 =
2(ksyn)2kclose

∆
(9)

One should keep in mind that there is still probability associated with the now “hidden”
2,ATP,ADP and 2,2ADP states

P2,ATP,ADP = [2khydr(2ksyn + kopen)/∆]P2,2ATP

+ [2ksynkclose/∆]P3,2ADP

P2,2ADP = [4(khydr)
2/∆]P2,2ATP

+ [kclose(khydr + ksyn)/∆]P3,2ADP (10)

and that P2 = P2,2ATP + P2,ATP,ADP + P2,2ADP.

3.2 Ratio of khydr to ksyn

In the presence of SMCs (concentration [SMC]), a solution of ATP, ADP and inorganic
phosphate Pi settles, after some time, at equilibrium concentrations dictated by the steady
state of the following equations

d[ATP]

dt
= −(khydr,0 + kSMC,ATP

on [SMC])[ATP] +

+ksyn,0[ADP · Pi] + kSMC·ATP
off [SMC · ATP]

d[ADP]

dt
= −(kADP,Pi

on [Pi] + kSMC,ADP
on [SMC])[ADP] +

+kADP·Pi
off [ADP · Pi] + kSMC·ADP

off [SMC · ADP]

d[Pi]

dt
= −(kADP,Pi

on [ADP] + kSMC·ADP
on )[Pi] +

+kADP·Pi
off [ADP · Pi] + kSMC·ADP·Pi

off

d[ADP · Pi]

dt
= −(ksyn,0 + kADP·Pi

off )[ADP · Pi] +

+khydr,0[ATP] + kADP,Pi
on [ADP][Pi]
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d[SMC · ADP]

dt
= −(kSMC·ADP,Pi

on [Pi] + kSMC·ADP
off )[SMC · ADP] +

+kSMC·ADP·Pi
off [SMC · ADP · Pi] + kSMC,ADP

on [SMC][ADP]

d[SMC · ADP · Pi]

dt
= −(kSMC·ADP·Pi

off + ksyn)[SMC · ADP · Pi] +

+kSMC·ADP,Pi
on [Pi][SMC · ADP] + khydr[SMC · ATP]

d[SMC · ATP]

dt
= −(khydr + kSMC·ATP

off )[SMC · ATP] +

+kSMC,ATP
on [SMC][ATP] + kSMC·ADP·Pi

syn [SMC · ADP · Pi] (11)

In these equations we capture the spontaneous hydrolysis and synthesis of ATP into and
from ADP and Pi (rates khydr,0 and ksyn,0 respectively) alongside the same reactions catalyzed
by the SMC (khydr and ksyn). Binding/unbinding of Pi to ADP or to the SMC · ADP complex
are explicitly taken into account.

At equilibrium, each reaction obeys detailed balance, and it is straightforward to solve
for equilibrium to give an expression for the ratio of SMC-catalyzed rates: khydr/ksyn:

khydr

ksyn

=
Kd,2,ATP

Kd,2,ADPKd,2,Pi

[Pi]eq[ADP]eq

[ATP]eq

(12)

Here the binding affinities are those for ATP, ADP and Pi to the SMC complex in protein
state 2, each one being given by a ratio of corresponding off- to on-rates of the general form
Kd = koff/kon.

4 Energy consumption during the reaction cycle

In steady state, the net flux (total forward minus backward transitions per unit time) between
each pair of adjacent states is equal, and for the four-state reduced model we have the
thermodynamic relation

k0k1k2k3

k′0k
′
1k
′
2k
′
3

=

(
[ATP]/[ATP]eq

([ADP]/[ADP]eq)([Pi]/[Pi]eq)

)2

(13)

This relation must hold since the energy dissipated during one cycle must correspond to the
free energy released by hydrolysis of 2 ATPs. Eq. (13) indicates that the cycle will run
“forward” (towards ATP hydrolysis) when ATP concentration is sufficiently high relative to
ADP concentration, that the cycle will run backwards under conditions of sufficient excess
ADP/phosphate, and that the cycle will cease when equilibrium is reached (concentrations
equal to their equilibrium values). “Integrating out” the 2,ATP,ADP and 2,2ADP states
does not alter the detailed balance relation (13) since k2/k

′
2 = k2

hydkopen/(k
2
synkclose).

The thermodynamic constraint (13) sets the as-yet-undetermined rate k′3:

k′3 = k3p0,2ADP,2Pie
β[εeng+εopen](

Kd,2,ATP

Kd,0,ATP

Kd,0,ADP

Kd,2,ADP

Kd,0,Pi

Kd,2,Pi

)2

(14)
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This form of this reverse rate makes physical sense: the leading term selects only the subpop-
ulation of state 0 with ADP and Pi bound for the transition in the direction of k′3, and the
Boltzmann factor provides precisely the energy cost of opening the closed “hairpin” without
the ATP-closed gate. The final terms take into count the free energy difference between
cofactors bound to state 0 and state 2. A explicit calculation of (13) follows.

4.1 Enforcing thermodynamic consistency

One may show by explicit calculation that the physical constraint that the model dissipates
only the energy associated with hydrolysis of the two ATPs per cycle, constrain the rates as
described above. The basic thermodynamic relation relating the rates to energy dissipation
for one cycle of the model is:

k0k1k2k3

k′0k
′
1k
′
2k
′
3

=
p0,2ATPkengk1(khydr)

2kopenk3

kdisk′1(ksyn)2kclosekrevp0,2ADP+2Pi

= γ (15)

where γ = 1 in equilibrium conditions, and γ = e2β∆GATP when energy is available. The
hydrolysis and synthesis rates for the SMC are khydr and ksyn. They appear squared because
two ATP molecules need to be hydrolysed (or synthesized) along the cycle, and this comes
naturally by using the formulas obtained in the previous section.

We note that krev is the transition rate from the 2ATP·2Pi substate of SMC state 0, and
therefore that the transition rate from the composite state 0 is k′3 = krevp0,2ADP·2Pi. Similarly,
the net transition rate from composite state 0 to state 1 is k1 = kengp0,2ATP.

In (15) we aim to constructively apply thermodynamic consistency to constrain the
choices of rates and to derive a formula for γ.

4.2 Determination of γ

We now can simply compute γ (note that in the main text we take the approach of stating
what γ must be from energy considerations). Indeed, by substituting the expressions for
p0,2ATP, p0,2AADP+2Pi and khydr/ksyn into (15) we obtain

γ =
p0,2ATP

p0,2ADP+2Pi

(
khydr

ksyn

)2
kengk1kopenk3

kdisk′1kclosek′3
=

=

(
[ATP]

[ADP][Pi]

[ADP]eq[Pi]eq

[ATP]eq

)2
kengk1kopenk3

kdisk′1kclosekrev

(16)

By evaluating this expression at equilibrium ([ATP] = [ATP]eq, [ADP] = [ADP]eq, [Pi] =
[Pi]eq and γ = 1) we obtain

kengk1kopenk3

kdisk′1kclosekrev

= 1 (17)

and thus we have

γ =

(
[ATP]

[ATP]eq

[ADP]eq
[ADP]

[Pi]eq
[Pi]

)2

(18)
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In this expression we still need the phosphate concentrations, [Pi] and [Pi]eq. In biochemistry
experiments, one typically strives for large excess of ATP over Pi, and it is often difficult to
say what the Pi concentration is for in vitro experiments. Fortunately, in a driven system that
primarily runs “forward”, the synthesis reaction will often be so slow that one can choose a Pi
concentration with impunity. Alternately, in vivo, [Pi] ' 20−40 mM [7], implying that, Pi in
excess over the nucleotides (which in vivo are in the mM range) and thus will be unaffected
by ATP hydrolysis/synthesis, allowing the approximation [Pi] = [Pi]eq, simplifying in the
expression for γ.

4.3 Reaction cycle flux

The complete formula for the flux (steady state reaction cycles per unit time) is too complex
to publish: the authors will of course provide the formula on request. However, it is possible
to show analytically that it has the form

flux = (γ − 1) k1k3kengk
2
hydrkopenF

(
[ANP],

[ATP]

[ADP]
,

[ATP]eq

[ADP]eq

)
(19)

The γ − 1 factor in this expression shows that the flux is proportional to the exponen-
tial of the energy available from ATP hydrolysis. This property verifies that the model is
thermodynamically consistent.

5 Free energy release from ATP hydrolysis and equi-

librium nucleotide concentrations

One can consider as input to the model the concentrations of phosphate and nucleotides,
i.e., [ATP], [ADP] and [Pi] as prepared in a given experimental situation or as occur in
vivo. Our model also requires the equilibrium concentrations of these reactants given those
inputs, which is determined by the dissociation constant K for ADP/ATP equilibrium, via
[ADP]eq[Pi]eq = K[ATP]eq. Experimental data indicate K = e16 M [8]; given that in vitro or
in vivo [ATP] is far above its equilibrium value allows use of the first term of an expansion
in [ATP]/K, of the exact result for [ATP]eq (derived in Sec. 5.1):

[ATP]eq =
([ADP] + [ATP]) ([Pi] + [ATP])

K
+O

(
[ANP]3

K2

)
(20)

with [ANP] = [ADP] + [ATP], [ADP]eq = [ADP] + [ATP] − [ATP]eq and [Pi]eq = [Pi] +
[ATP]− [ATP]eq.

5.1 Equilibrium ATP, ADP and Pi concentrations

Since one ADP and one Pi can combine to form one ATP, the total ADP and Pi including that
“bound” inside ATP are [ADP]T = [ADP]+[ATP] and [Pi]T = [Pi]+[ATP]. The equilibrium
concentrations are therefore related by ([ADP]T − [ATP]eq)([Pi]T − [ATP]eq) = K[ATP]eq,
where K is the equilibrium constant for the ATP synthesis reaction.
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We may solve for [ATP]eq:

[ATP]eq =
1

2

[
K + [ADP] + [Pi] + 2[ATP]

−
√

(K + [ADP] + [Pi] + 2[ATP])2 − 4([ADP] + [ATP])([Pi] + [ATP])
]

(21)

with [ADP]eq = [ADP] + [ATP]− [ATP]eq and [Pi]eq = [Pi] + [ATP]− [ATP]eq.
Given that the decomposition is ATP is highly exothermic under most circumstances, K

will be large compared to any of the reactant concentrations, indicating that we can expand
(21) in powers of 1/K:

[ATP]eq =
([ADP] + [ATP]) ([Pi] + [ATP])

K
+O

(
[ANP]3

K2

)
(22)

Experimental data indicate [ATP]eq/[ADP]eq ≈ 10−9 under in vivo-like conditions with [Pi] ≈
10 mM [8], indicating K = e16 M, the value taken in the main paper.

6 Michaelis-Menten-like cycling rate for the approxi-

mate model

Starting from the reduced 4-state model, we neglect all reverse rates except k′1 and setting
P2 = P2,ATP, the steady-state equations simplify to:

k3P3 = k0P0

k0P0 + k′1P2 = k1P1

k1P1 = (k′1 + k2)P2

k2P2 = k3P3 (23)

As for Eq. 13 of the main paper, these equations are overdetermined, and any one can be
dropped. The resulting inhomogenous linear system of four equations for the four Pi can
easily be solved, with the result

P0 =
k1k2k3

k1k2k3 + (k1k2 + k1k3 + k′1k3 + k2k3)k0

P1 =
[k′1 + k2]k0

k1k2

P0

P2 =
k0

k2

P0

P3 =
k0

k3

P0 (24)

The steady-state cycling rate can be computed from any one of the transition steps in the
model. Because of the irreversibility of three of the steps (head engagement, ATP hydrolysis,
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ADP release), the reaction can only cycle forward; the cycling rate kcycle can be most easily
be computed from one of the irreversible steps, e.g., kcycle = k0P0, or

kcycle =
k1k2k3k0

k1k2k3 + (k1k2 + k1k3 + k′1k3 + k2k3)k0

=
k0

1 + (B + C/k1)k0

(25)

where B = 1/k2 + 1/k3 and C = 1 + k′1/k2 are used to write the simplified final expression.

7 Additional results for the model

We include a series of figures showing the steady-state translocation/extrusion rate (ignoring
any slippage effects from load force) and state probabilites calculated for the reduced 4-state
model with all four reverse rates (i.e., not the approximate model of the previous section),
which may be useful for reproducing our results.
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Supplementary Figure 1: Extrusion/translocation velocity as a function of the [ATP]/[ADP]
ratio for various total nucleotide concentrations.
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Supplementary Figure 2: Extrusion/translocation velocity as a function of the total nu-
cleotide concentration, [ANP], for various [ATP]/[ADP] ratios.
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Supplementary Figure 3: Extrusion/translocation velocity as a function of the DNA tension,
for a series of fixed total nucleotide concentration, [ANP]=[ATP]+[ADP].
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Supplementary Figure 4: Extrusion/translocation velocity as a function of the [ATP]/[ADP]
ratio for various phosphate dissociation constants (and [ANP] = 1 mM). It can be observed
that, the stickier is phosphate, the larger the [ATP]/[ADP] ratio must be to have extru-
sion. This can be understood thermodynamically, because more energy (proportional to
ln ([ATP ]/[ADP ]) is consumed to detach the phosphate, and less is available to extrude
loops.
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Supplementary Figure 5: Probabilities of the states of the reduced model as a function of
the [ATP]/[ADP] ratio ([ANP = 1 mM]). P2 refers to the sum of probabilities of the three
nucleotide occupation states in SMC state 2.
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Supplementary Figure 6: Probabilities of the states of the reduced model as a function of the
DNA tension for [ATP]/[ADP]=10 and[ANP] = 10 mM]. P2 refers to the sum of probabilities
of the three nucleotide occupation states in SMC state 2.

13


