Supplementary Materials

Tumor variant identification that accounts for the unique molecular landscape of pediatric malignancies

Supplemental Methods

Tumour samples. All tumour samples were retrospectively sourced from the Biobank at BC Children's Hospital (BCCH) following approval by the University of British Columbia Children's and Women's Research Ethics Board (REB #H17-01860).

Amplicon-based sequencing and variant determination. Extraction of DNA (RecoverAll, Thermo Fisher Scientific (TFS)) and RNA (Allprep, Qiagen), library preparation, and targeted sequencing on the Ion Chef and Ion Torrent S5 platforms followed manufacturer's protocols (TFS). Oncomine Comprehensive Assay version 3 (OCAV3) includes 2,290 unique DNA-based amplicons to detect SNVs and CNVs as well as 867 RNA-based amplicons to detect unique fusions or structural variants. Oncomine Childhood Cancer Research Assay (OCCRA) includes 2,031 unique DNA-based and 1,701 RNA-based amplicons. Detection sensitivities include: hotspot mutations (OCAV3: 99.2%; OCCRA: 99%), Indels (OCAV3: 96.9%; OCCRA: 100%), and fusions (OCAV3: 95.4%; OCCRA: 92.2% or 82.9% for blood or tissue samples) [1, 2]. Average read depth for DNA and RNA for both panels was approximately 9x10⁶-12x10⁶ and 8x10⁵ - 1 x10⁶, respectively.

SNVs, including those in pediatric cancer driver genes, non-driver genes, variants of undetermined significance and benign/likely benign variants, were retrieved with Ion Reporter software (version 5.2). Copy number (CN) measurements were retrieved with Ion Reporter software (version 5.2) for genes with >5 probes, including those that were validated for CN gains (Table S5). We noted frequent detection of homogenous loss for CDKN2A, which is not validated in either panel. To determine cut-offs for CN loss and CN gain that were verifiable by orthogonal clinical reports and/or whole genome sequencing, CN measurements for 14 genes captured by both panels were plotted and true positive calls for CN gains or losses were marked (Figure S2). A cut-off for loss at CN <1.1 and a cut-off for gain at CN >3.5 gave 35 abnormal CN calls in these 14 genes; 19 of those calls (7 gains, 12 losses) were verifiable by clinical reports and/or whole genome sequencing. For these 19 true positive calls, the OCCRA panel detected 18 of 19 (95%)(one false negative: sample 27 gave PDGFRA at CN=3) while OCAV3 panel detected 16 of 19 (80%)(three false negatives: sample 13 gave CDKN2A at CN> 1.1; sample 16 gave MYCN at CN> 1.1; sample 23 gave CDKN2AB at CN> 1.1)(Figure S2).

Archived and summarized whole genome sequencing data from the analysis of matched samples, when available, was provided by the Personalized Onco-Genomics program [3].

Data winnowing for pediatric cancer driver genes. Variants that were detected and filtered out of the analysis are tabulated in Table S2. These variants were filtered out when: (1) the variation occurred in genes not

considered to be driver genes for pediatric tumors (indicated by a *, Table S2); (2) the variant is of undetermined significance (indicated by a \ddagger , Table S2); or, (3) the variant is benign/likely benign (indicated by a \land , Table S2).

Variant – agent determination. Variant-agent pairs were determined using the Pediatric MATCH prioritization strategy [4]. Variant- agent pairs supported by clinical trials or case reports, including JAK1 variants with JAK/STAT inhibitors [5] and NUP214-ABL1 with tyrosine kinase inhibitors [6, 7], were also included.

3///	CIVV	10310113
JAK1 KRAS NF1 TSC2 BRAF PTPN11 SMARCA4 SMARCB1 TP53	CDKN22AB (-) JAK2 (+) HRAS (+) KRAS (+) NF1 (-) MYC (+) FGFR1 (+) MYC (+) FGFR1 (+) BRAF (+) ABL1 (+) FEZ (+) FEZ (+) FEZ (-) RUN11 (+) FEZ (-) RB1	ETV6-RUNX1 NUP214-ABL1 STIL-TAL
		$\begin{array}{c} \Theta \Theta \Theta \\ \Theta \Theta \Theta \end{array}$
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
$11 \bigcirc $		
$14 \bigcirc \bigcirc$		
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\bigcirc \bigcirc $	$\begin{array}{c} & & \\$
19 19 10 <	$\bigcirc \bigcirc $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥	$\bigcirc \bigcirc $
25 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\bigcirc \bigcirc $	$\bigcirc \bigcirc $
		$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
hway X X X ibitors X X X	4 (X) AEK 0 n (X) 3FR RAF RAF	sine ase*
	I = I = I = I = I = I = I = I = I = I =	

Figure S1. Comparison between whole genome or amplicon-based sequencing detection of pediatric cancer driver genes.

010/

Single nucleotide variants (SNV), copy number variants (CNV) and fusions were assayed across 28 samples using amplicon-based sequencing and, for the final 12 samples, whole genome sequencing (WGS). The detection of a variant is indicated by a filled half- or semi-circle with the color corresponding to the modality that detected the variant. Using the strategy outlined by the Pediatric MATCH target-agent prioritization committee, target - inhibitor pairs were determined for each sample. Inhibitors to those pathways that were reviewed by the committee but are not currently included in Pediatric MATCH are designated with an (X). Agents that were not included for review by Pediatric MATCH are indicated by an asterisk.

010/

OCCRA OCAV3 wgs

A. Copy number measurements for indicated genes across 28 samples. Sample #18 (red), which had low tumor content (<20%), gave discordant measurements. Selected gene-sample measurements are highlighted as follows: gains/ losses that were also observed by whole genome sequencing (WGS) are indicated by black circles; gains/ losses that were annotated in clinical reports are indicated by grey circles.
B. Copy number measurements for those genes that are common between OCCRA and OCAV3 and contained >5 probes across 27 samples (n=378 measurements per panel). Data obtained from sample #18 is excluded. Selected gene-sample measurements are highlighted as follows: gene probes that were validated for amplification are circled in green; gains/ losses that were also observed by whole genome sequencing (WGS) are indicated by black circles; gains/ losses that were annotated in clinical reports are indicated by mole genome sequencing (WGS) are indicated by black circles; gains/ losses that were annotated in green; gains/ losses that were also observed by whole genome sequencing (WGS) are indicated by black circles; gains/ losses that were annotated in clinical reports are indicated by grey circles.

Supplemental Tables

Table S1: SNVs, CNVs, and fusions, filtered for pediatric cancer driver genes, are tabulated for amplicon-based (OCCRA or OCAV3) and
whole genome sequencing (WGS). Clinical data was extracted for samples $1 - 16$. Not available, N/A.

			Tumor	content	SNVs (allele frequency) CNVs (copy number)				Fusions (counts)			
Sample	Patient	Cancer Type	WGS	Panels	OCCRA	OCAv3	WGS	OCCRA	OCAv3	WGS	OCCRA	OCAv3
1	1	B-ALL	-	96	0	0	-	0	0	-	0	0
2	2	B-ALL	-	79	0	0	-	RUNX1 (4.35)	0	-	0	0
3	3- Diagnosis	B-ALL	-	83	TP53 (0.82) Arg248Gln	TP53 (0.79) Arg248Gln	-	RB1 (0.74) [^]	RB1 (0) [^]	-	0	0
4	3- Relapse2	B-ALL	-	67	TP53 (0.80) Arg248Gln	TP53 (0.82) Arg248Gln	-	CDKN2A (0.62) [^]	CDKN2A (0) [^]	-	0	0
5	4- Relapse2	B-ALL	-	96	JAK1 (0.48) Val658Phe	JAK1 (0.46) Val658Phe	-	CDKN2A (0.07) ^{†, ^} CDKN2B (0.07) [^]	CDKN2A (0.08) ^{‡,^} CDKN2B (0.08) [^]	-	0	0
6	4- Relapse5	B-ALL	-	90	JAK1 (0.98) Val658Phe	JAK1 (0.98) Val658Phe	-	CDKN2A (0.04) [^] CDKN2B (0.04) [^] PTCH1 (1.0) [^]	CDKN2A (0.05) [^] CDKN2B (0.05) [^] PTCH1 (0.9) [^]	-	0	0
7	5	B-ALL	-	92	KRAS (0.16) Gly12Ser	KRAS (0.19) Gly12Ser	-	CDKN2A (0.47) ^{‡,^} CDKN2B (0.51) [^]	CDKN2A (0.17) ^{‡,^} CDKN2B (0.22) [^]	-	ETV6- RUNX1 (922510)	0
8	6- Relapse1	B-ALL	-	N/A	0	0	-	JAK2 (4.00) [†] CDKN2A(4.10) ^{†,^} CDKN2B (3.9) ^{†,^} PAX5(4.00) [†] ABL1 [†] (3.54)	CDKN2A(4.03) ^{‡,^} CDKN2B (4.47) ^{‡,^}	-	0	0
9	7	B-ALL	-	97	0	0	-	0	0	-	0	0
10	8	B-ALL	-	90	PTPN11 (0.37) Glu76Lys	PTPN11 (0.38) Glu76Lys	-	CDKN2A(0.40) ^{+,^} CDKN2B (0.38) [^] RUNX1 (3.71)	CDKN2A (0.38) ^{‡,^} CDKN2B (0.37) [^]	-	0	0
11	9	T-ALL	-	90	0	0	-	0	0	-	STIL-TAL (5678)	0
12	10	T-ALL	-	81	0	0	-	CDKN2A (0.03) ^{‡,^}	CDKN2A (0.32) ^{‡, ^}	-	0	0
13	11	T-ALL	-	96	0	0	-	CDKN2A[‡] (0.03) CDKN2B (0.03)	0	-	NUP214- ABL1 (12524)	0
14	12	T-ALL	-	83	0	0	-	CDKN2A ^{‡, ^} (0.45) CDKN2B ^{‡, ^} (0.05)	CDKN2A ^{‡, ^} (0.46) CDKN2B ^{‡, ^} (0.06)	-	0	0
15	13	Neuroblastoma	-	N/A	0	0	-	0	0	-	0	0
16	14	Neuroblastoma	-	N/A	0	0	-	0	0	-	0	0
17	15	Neuroblastoma	80%	N/A	0	0	0	0	MYCN [*] (3.7)	0	0	0
18	16	Neuroblastoma	41%	23%	0	0	0	CDKN2A (0) CDKN2B (0.44) PTEN (0.53) RB1 (0.67) SETD2 (0.67) SUZ12 (0.53)	SLX4 (0.84) TP53(0.53) SMARCA4 (1.07)	0	0	0

19	17- Relapse5	Neuroblastoma	90%	58%	BRAF (0.54) Gly469Ala	BRAF (0.56) Gly469Ala	BRAF Gly469Ala	EED (0.45)	FBXW7 [^] (3.5)	FBXW7 [^] (gain)	0	0
20	18- Relapse1	Neuroblastoma	45%	43%	0	0	0	SETD2 [^] (0.33) KRAS ^{*,^} (3.7)	SETD2 [^] (0) CDKN1B (3.57) KRAS ^{*,^} (3.7)	CHEK1(Gain) KRAS (Gain) HRAS (Gain) ARID1A(Loss)	0	0
21	19	Osteosarcoma	78%	95%	TSC2 (0.63) Tyr190Ter	TSC2 (0.67) Tyr190Ter	0	CDK4 ^{*,^} (15.3) MYC ^{*,^} (7.16)	CDK4 ^{*,^} (18.68) MYC ^{*,^} (8.27)	CDK4 ^{*,^} MYC ^{*,^}	0	0
22	20	Astrocytoma	41%	80%	0	0	0	FGFR1 ^{*,^} (3.5)	FGFR1 ^{*,^} (4.0)	0	0	0
23	21	Glioblastoma	58%	20%	0	0	0	CDKN2A [^] (1.0) CDKN2B [^] (1.0)	0	CDKN2A(loss) [^] CDKN2B(loss) [^]	0	0
24	22- Relapse1	Rhabdo- myosarcoma	98%	70%	NF1 (0.44) Glu318fs	NF1 (0.44) Glu318fs	NF1 Glu318Lysfs	ARID1A [^] (0.17) FGFR1 ^{*,^} (5.91) MYC [^] (4.59) ASXL2 (3.65)	ARID1A [^] (0.19) FBXW7 (0.33) FGFR1 ^{*,^} (6.29) MYC ³ (4.31)	FGFR1 ^{*,^} (Gain) MYC [^] (Gain) PTCH1 (Loss)	0	0
25	23	Rhabdoid (kidney)	23%	43%	0	0	SMARCB1 Glu300Aspfs	0	0	0	0	0
26	24- Relapse1	Neurofibroma	35%	60%	NF1 (0.59) Arg2637Ter	NF1 (0.55) Arg2637Ter	0	0	0	NF1 (loss)	0	0
27	25	Glioblastoma	88%	63%	0	0	0	ARID1A [^] (0.95) CDKN2A (0) CDKN2B (0.29) KIT [^] (0.99) RB1 [^] (1.10)	ARID1A [^] (0.48) FBXW7 [^] (0.64) FLT3 (0.88) KIT [^] (0.77) PDGFRA ^{*,^} (5.07) RB1 [^] (0.50)	ARID1A [^] (loss) FBXW7 [^] (loss) PDGFRA [^] (gain) RB1 [^] (loss) TET2 (loss)	0	0
28	26	Rhabdoid (kidney)	76%	65%	SMARCA4(0.38) Gln144Ter	SMARCA4(0.39) Gln144Ter	SMARCA4 Gln144Ter	0	0	0	0	0

* variants detected with probes validated for CNV

[‡] variants confirmed by clinical tests

 \wedge variants detected by >1 modality

SNVs (allele frequency) Tumor content CNVs (copy number) Fusions (counts) WGS Panels OCCRA OCAv3 WGS OCCRA OCAv3 WGS OCCRA OCAv3 Sample Patient Cancer Type **ATM**[^](0.48) 0 N/A 0 0 0 0 1 B-ALL 96 1 Asp1853Asn **ATM**[^](0.49) 2 2 B-ALL 79 0 N/A 0 0 0 0 _ Asp1853Asn 3-0 0 0 0 0 0 3 **B-ALL** 83 N/A _ Diagnosis 3-4 B-ALL 67 0 0 N/A 0 0 0 0 Relapse2 **SETD2[†]** (0.49) 4-B-ALL 96 0 N/A 0 0 0 0 Tyr1481Ter 5 Relapse2 **SETD2**[‡] (0.53) 4-0 N/A 0 0 0 0 **B-ALL** 90 _ Tyr1481Ter 6 Relapse5 0 7 5 B-ALL 92 0 N/A 0 0 0 0 -6-0 0 0 0 0 8 B-ALL N/A N/A 0 Relapse1 9 B-ALL 97 0 0 N/A 0 0 0 0 7 --**ATM**[^](0.46) 10 8 B-ALL 90 0 N/A 0 0 0 0 -Asp1853Asn 11 9 T-ALL 90 0 0 N/A 0 0 0 0 FBXW7^(0.04) FBXW7^(0.04 0 0 0 0 12 10 T-ALL 81 N/A _ Arg465His Arg465His **SLX4[†]** (0.53) 13 11 T-ALL 96 0 N/A **CRLF1**^{*} (0.93) 0 0 0 -Gln1632fs 14 12 T-ALL 83 0 0 N/A 0 0 0 0 N/A 15 13 Neuroblastoma N/A 0 0 0 0 _ 0 0 **KIT**[^](0.49) **ABL2**^{*} (4.01) 14 0 N/A 0 0 0 16 Neuroblastoma N/A **MYCN[‡]** (0.96) Met541Leu **CDK12**^{*} (4.0) ERBB2^{*} (4.32) 0 0 ERBB2^{*} (4.86) 0 0 17 15 Neuroblastoma 80% N/A 0 0 **RNF43**^{*} (4.14) **RAD51C**^{*} (4.04) **SLX4[†]** (0.53) KRAS[†] (1.02) 0 18 16 Neuroblastoma 41% 23% 0 0 0 0 0 **MYCN[‡]** (0.93) Gln1632fs CCND1^{*} (gain) AURKA^{*} (gain) PIK3CA[‡] **CCND1**^{*} (9.47) SMAD4^{*} (gain) **ATM^{*}** (0.79) Gly12Asp 17-**CCND1**^{*} (11.60) FGF3^{*} (8.38) ERBB2^{*} (gain) 19 Neuroblastoma 90% 58% 0 0 0 Relapse5 Arg337His NOTCH1[‡] **FGF19**^{*} (8.56) LRP1B^{*}(gain) Thr194Pro CDK6^{*} (gain) INPP4B^{*} (gain) SFPQ^{*} (loss) $ROS1^{\dagger}$ **MET**^{*} (0.51) **CCND1**^{*} (6.47) 18-CCND1^{*} (7.76) MLH1^{*} (loss) 20 Neuroblastoma 45% 43% 0 0 0 Relapse1 Glu168Asp lle1530Thr FGF3^{*} (6.02) CLSPN^{*} (loss)

Table S2: Summary of filtered out SNVs, CNVs, and fusions for amplicon-based (OCCRA or OCAV3) and whole genome sequencing (WGS). Not available, N/A.

										XPC [*] (loss)		
										CUL5 [*] (loss)		
										FANCD2 [*] (loss)		
										ATM [*] (loss)		
										MUTYH [*] (loss)		
										CCND1/2 [*] (gain)		
										FGF3/4 [*] (gain)		
										ETV4 [*] (gain)		
										GNAS [*] (gain)		
										NTRK1 [*] (gain)		
										MDM4 [*] (gain)		
										CCNF1 [*] (gain)		
21	19	Osteosarcoma	78%	95%	0	0	0	GLI1 [*] (15.3)	0	DMD [*] (loss)	0	0
	10	Concoolar conna		50/0	0	C C	0	(1010)	°	LSAMP [*] (loss)	Ũ	Ũ
								ABI 2 [*] (5.35)	DDR2 * (5 39)	MCI1 [*] (gain)		
22	20	Astrocytoma	41%	80%	0	0	0	$FASIG^{*}(5.29)$	MDM4 [*] (4 14)	MDM4 [*] (gain)	0	0
22	20	Astrocytomu	41/0	0070	0	0	0	MDM4 [*] (5.21)	NTRK1 [*] (4.16)	(gain)	U	U
23	21	Glioblastoma	58%	20%	0	0	0	0	0	0	0	0
25	21	Gilobidatoinid	5070	2070	0	0	0	AKT1 [*] (0.97)	0	0	0	0
							POLO*	ARI1 (0.87)	NRN [*] (5.47)			
24	22-	Rhabdo-	0.00/	70%		0		CHD2* (5.24)	DADE1 $P^*(0.96)$	0	0	0
24	Relapse1	myosarcoma	5070	7070	(0.55) GluE2ETor	0	Q2550113	MTOP [*] (0.94)	KRADSID (0.80)	0	0	0
					Gluszstel			$VDAS^{\dagger}$ (1.05)	KRAS (0.9)			
		Dhahdaid						KKA3 (1.05)				
25	23	(kidnov)	23%	43%	0	0	SIVIARCE1	0	0	0	0	0
		(kiuney)					Glu300Aspis					
	24						PKSSS					
26	24-	Neurofibroma	35%	60%	0	0	Arg255Gly	0	0	0	0	0
	Relapse1						ACSIVI5					
							Asp400Asn			EUDD (*(1))		
										FUBP1 (loss)		
										FAT1 (loss)		
										SDHB (loss)		
										CDKN2C (loss)		
						PALB2 ⁺ (0.43)				ERCC5 (loss)		
27	25	Glioblastoma	88%	63%	0	Arg170fs	0	0	0	ING1 (loss)	0	0
1										NFKB1 (loss)		
										MUTYH (loss)		
										BRCA2 (loss)		
										ATK3 (gain)		
										ABL2 [°] (gain)		
28	26	Rhabdoid (kidnev)	76%	65%	TET2 [*] (0.45) Val1718Leu	0	0	0	0	0	0	0
					1		1	1				

* variants in genes that are not frequently mutated in pediatric cancers

[‡] variants of undetermined significance

 \wedge benign/likely benign variants

Table S3: 151 pediatric driver genes. List derived from 77 significantly mutated genes [8] and the top 100

 recurrently mutated genes in pediatric tumors [9] cross-referenced to remove duplicates.

AADACL4	CBFB	EP300	JAK2	NIPBL	PTPRD	STAG2	WDR64
ABL1	CBL	ERG	JAK3	NKX2-1	RAG1	STAT5B	WHSC1
ACVR1	CCND3	ETV6	KBTBD4	NOCR1	RB1	SUFU	WT1
ADD3	CDKN1B	FAT2	KDM68	NOTCH1	RHOA	SUZ12	WZH2
ALK	CDKN2A	FBN2	KDM6A	NOTCH2	ROS1	TAL1	XBP1
ARID1A	CDKN2B	FBXO11	KIT	NPM1	RPL10	TBL1RX1	ZEB2
ARID2	CDK4	FBXW7	KMT2A	NRAS	RPL22	TBR1	ZFP36L2
ASXL	CEBPA	FGFR1	KMT2C	NUP98	RUNX1	TCF3	ZIC1
ASXL2	CHD4	FLG	KMT2D	P2RY8	SELP	TCF7	ZMYM3
ATF7IP	COL1A1	FLT3	KRAS	PAX5	SETD2	TERT	ZNF217
ATRX	CREBBP	FMR1	LAPTM4B	PCBP1	SF3B1	TET2	ZNF384
BCL11B	CRLF2	GATA2	LEF1	PDGFRA	SH2B3	TFAP4	
BCOR	CTCF	H3F3A	LMO2	PHF6	SHANK2	TLX1	
BCORL1	CTNNB1	HDAC2	MED12	PIK3CA	SI	TLX3	
BCR	DDX3X	HIST1H3B	MGA	PIK3R1	SIRPA	TOX	
BPIFB1	DGCR8	ID3	MLLT10	PTCH1	SIX1	TP53	
BRAF	DNM2	IDH1	МҮВ	PTCHD4	SMARCA4	UBA2	
BTG1	DROSHA	IKZF1	MYC	PTEN	SMARCB1	USP7	
C10orf112	EBF1	IL7R	MYCN	PTPN11	SMG8	USP9X	
CARD11	EED	JAK1	NF1	PTPN2	SMO	WAC	

OCCRA OCAV3 **Hotspot Genes** Full Exon **CNV** Fusion Expression **Hotspot Genes** Full Genes CNV Fusions ABL1 ABL2 APC ALK ABL1 ABL2 BCL2 AKT1 AKT2 ATM AKT1 ALK ACVR1 ARID1A BRAF ALK BCL11B BCL6 AKT3 ALK BAP1 AR AXL 4LK BCOR ASXL1 ARID1B CCND1 BCR FGFR1 AR ARAF BRCA1 CCND1 BRAF AKT1 BRAF ASXL2 BRAF ATRX CDK4 BRAF CAMTA1 FGFR4 AXL BRCA2 CCNE1 EGFR CALR CBL CDKN2A CDK6 CND1 CIC GF1R втк CBL CDKN2A CDK4 ERBB2 CCND3 CCR5 CDKN2B EGFR CREBBP CRLF2 MET CCND1 CDK4 FBXW7 CDK6 ERG CDK4 CIC CEBPA ERBB2 CSF1R DUSP22 MYCN CDK6 CHEK2 MSH2 EGFR ETV1 CHD7 ERBB3 EGFR ETV6 MYC CSF1R CTNNB1 NF1 ERBB2 ETV4 CREBBP CRLF2 FGFR1 TOP2A DDR2 NF2 CSF1R CSF3R CRLF1 EWSR1 FGFR1 EGFR FGFR1 ETV5 TNNB1 DAXX DDX3X FGFR2 FGFR2 FGFR3 ERB83 ERBB2 NOTCH1 FGFR2 FGFR1 DNMT3A EGFR DICER1 FGFR3 FLT3 FOSB ERBB4 ERCC2 PIK3R1 FGFR3 FGFR2 EP300 ERBB2 EBF1 FGFR4 FUS GLI1 ESR1 EZH2 PTCH1 FGFR4 FGFR3 ERBB3 ERBB4 EED GLI1 GLIS2 HMGA2 GFR1 FGFR2 PTEN FLT3 NTRK1 GLI2 EZH2 FAS JAK2 FGFR3 FGFR4 RB1 IGF1R NTRK3 ESR1 KAT6A IGF1R FOXL2 KIT FBXW7 FGFR2 GATA1 KMT2A KMT2B FLT3 SMARCB1 PDGFRA FGFR3 FLT3 GATA3 KIT KMT2C KMT2D GATA2 GNA11 STK11 KRAS PPARG KRAS TP53 GATA2 GNA11 GNA13 LMO2 MAML2 GNAQ GNAS MDM2 RAF1 ID3 HIST1H3B H3F3A MDM2 MAN2B1 MECOM TSC1 MDM4 RET **GNAQ** H3F3A HDAC9 HIST1H3B IKZF1 MDM4 MEF2B MET HNF1A HRAS TSC2 MET ROS1 HRAS IDH1 KDM6A MET MKL1 MLLT10 IDH1 IDH2 ARID1A MYC AKT2 JAK2 IDH2 IL7R KMT2D MYC MN1 MYB JAK1 ATR MYCL AR AK1 JAK2 MYOD1 MYCN MYBL1 MYH11 JAK3 KDR ATRX MYCN BRCA1 KDM4C NF1 PDGFRA MYH9 NCOA2 KIT KNSTRN CDK12 PDGFRA BRCA2 JAK3 KDR KIT NF2 PIK3CA NCOR1 NOTCH1 KRAS MAGOH CDKN1B PIK3CA CDKN2A MAP2K1 PHF6 NOTCH2 NOTCH4 MAP2K1 MAP2K2 CDKN2B PPARG ERB84 KRAS MAP2K2 MET PRPS1 NPM1 NR4A3 MAP2K4 MAPK1 CHEK1 TERT ESR1 MPL MSH6 PSMB5 NTRK1 VTRK2 MAX MDM4 CREBBP AKT2 FGR MTOR NCOR2 PTCH1 NTRK3 NUP214 MED12 MET FANCA AKT3 FLT3 PTEN NUP98 NUT<u>M1</u> MYC ALK NOTCH1 NPM1 MTOR FANCD2 JAK2 NRAS NT5C2 RB1 NUTM2B PAX3 MYCN MYD88 FANCI AXL KRAS PAX5 PDGFRA RUNX1 PAX5 PAX7 NFE2L2 NRAS MLH1 BRAF MDM4 NTRK2 PIK3CA SMARCA4 PDGFB PDGFRA NTRK1 MRE11A CCND2 MET PDGFRB MSH6 PPM1D SMARCB1 PDGFRB PDGFRA PDGFRB CCND3 MYB PIK3R1 PLAG1 PTPN11 RAF1 SOCS2 RAF1 RANBP17 PIK3CA PIK3CB NBN CDK2 MYBL1 RHOA SUFU RARA RECK PPP2R1A PTPN11 NOTCH2 CDKN2A NF1 RET SETD2 SUZ12 RELA RET RAC1 RAF1 NOTCH3 CDKN2B NOTCH1 SETBP1 SH2B3 SH2D1A TCF3 ROS1 RUNX1 RET RHEB PALB2 ESR1 NOTCH4 SMO STAT3 TET2 SS18 SSBP2 RHOA ROS1 PMS2 FGF19 NRG1 FGF3 STAT5B TERT TP53 STAG2 STAT6 SF3B1 SMAD4 POLE NTRK2 ГРМТ USP7 TSC1 TAL1 TCF3 SMO SPOP RAD50 NTRK1 NUTM1 ZMYM3 TSC2 TFE3 TP63 SRC STAT3 RAD51 NTRK2 PDGFRB TSLP TSPAN4 ТОР1 RAD51B NTRK3 PIK3CA WHSC1 FERT WT1 UBTF USP6 U2AF1 XPO1 RAD51C PDGFRB PRKACA XIAP WHSC1 YAP1 RAD51D PIK3CB PRKACB ZMYND11 ZNF384 RNF43 RICTOR PTEN SETD2 TSC1 RAD51B TSC2 SLX4 RB1 SMARCA4 RELA RSPO2 RSPO3

TERT

Table S4: Genes and fusions covered by OCAV3 and OCCRA sequencing panels

Table S5: Genes with >5 probes filtered by pediatric cancer driving genes. Copy number (CN) results for the14 highlighted genes were used to optimize the definition of CN loss (<1.1) and CN gain (>3.5). Genes validated by the manufacturer to detect copy number gain indicated by an asterisk.

OCCRA			OCAV3				
ABL1	ACVR1	ALK*	ALK*	ARID1A	BRAF*		
ARID1A	ASXL2	BRAF*	CCND3*	CDK4*	CDKN1B		
CBL	CDK4*	CDKN2A	CDKN2A*	CDKN2B*	EP300		
CDKN2B	CEBPA	CREBBP	FBXW7	FGFR1*	FLT3*		
CTNNB1	EBF1	EED	KIT*	KRAS*	MYC*		
FGFR1*	GATA2	IKZF1	MYCN*	NF1	NOTCH1		
JAK1*	JAK2*	JAK3*	NOTCH2	PDGFRA*	PIK3CA*		
KIT*	KMT2D	KRAS*	PIK3R1	PTCH1	PTEN		
MYC*	MYCN*	NF1	RB1	ROS1	SETD2		
PAX5	PDGFRA*	PIK3CA	SLX4	SMARCA4	SMARCB1		
PIK3R1*	PTCH1	PTEN	SMO	TERT	TP53		
RB1	RUNX1	SETD2	WHSC1				
SMARCA4	SMARCB1	SUFU					
SUZ12	TCF3	TET2					
TP53	USP7	WHSC1					
WT1							

Table S6: Target and agent pairs identified for each patient sample.

		OC	CRA	00	CAV3	WGS		
Sample	Patient	Target	Agent	Target	Agent	Target	Agent	
1	1	0	N/A	0	N/A	N/A	N/A	
2	2	0	N/A	0	N/A	N/A	N/A	
3	3-Diagnosis	0	0	0	0	N/A	N/A	
4	3-Relapse2	CDKN2A loss ^[10]	CDK4/6 inhibitors [‡]	CDKN2A loss ^[10]	CDK4/6 inhibitors [‡]	N/A	N/A	
5	4-Relapse2	JAK1 ^[11] CDKN2A/B loss ^[10]	JAK/STAT inhibitors [^] CDK4/6 inhibitors [†]	JAK1 ^[11] CDKN2A/B loss ^[10]	JAK/STAT inhibitors [^] CDK4/6 inhibitors [†]	N/A	N/A	
6	4-Relapse5	JAK1 ^[11] CDKN2A/B loss ^[10]	JAK/STAT inhibitors [^] CDK4/6 inhibitors [†]	JAK1 ^[11] CDKN2A/B loss ^[10]	JAK/STAT inhibitors [^] CDK4/6 inhibitors [†]	N/A	N/A	
7	5	KRAS ^[12] CDKN2A/B loss ^[10]	MEK inhibitors * CDK4/6 inhibitors [†]	KRAS ^[12] CDKN2A/B loss ^[10]	MEK inhibitors * CDK4/6 inhibitors [‡]	N/A	N/A	
8	6-Relapse1	JAK2 amp ^[11]	JAK/STAT inhibitors [^]	0	N/A	N/A	N/A	
9	7	0	N/A	0	N/A	N/A	N/A	
10	8	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [‡]	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [‡]	N/A	N/A	
11	9	0	N/A	0	N/A	N/A	N/A	
12	10	CDKN2A loss ^[10]	CDK4/6 inhibitors [‡]	CDKN2A loss ^[10]	CDK4/6 inhibitors [‡]	N/A	N/A	
13	11	CDKN2A/B loss ^[10] NUP214-ABL1 ^[13]	CDK4/6 inhibitors [†] Tyrosine Kinase inh [^]	0	N/A	N/A	N/A	
14	12	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [†]	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [‡]	N/A	N/A	
15	13	0	N/A	0	N/A	N/A	N/A	
16	14	0	N/A	0	N/A	N/A	N/A	
17	15	0	N/A	MYCN amp ^[14]	BET inhibitors [‡]	0	N/A	
18	16	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [‡]	0	N/A	0	N/A	
19	17-Relapse5	BRAF ^[15]	BRAF inhibitors *	BRAF ^[15]	BRAF inhibitors *	BRAF ^[15]	BRAF inhibitors *	
20	18-Relapse1	KRAS amp ^[12]	MEK inhibitors *	KRAS amp ^[12]	MEK inhibitors *	KRAS amp ^[12] HRAS amp ^[16]	MEK inhibitors *	
21	19	TSC2 ^[17] CDK4 amp ^[18] MYC amp ^[19]	MTOR inhibitors * CDK4/6 inhibitors [†] BET inhibitors [†]	TSC2 ^[17] CDK4 amp ^[18] MYC amp ^[19]	MTOR inhibitors * CDK4/6 inhibitors [†] BET inhibitors [†]	CDK4 amp ^[18] MYC amp ^[19]	CDK4/6 inhibitors [‡] BET inhibitors [‡]	
22	20	FGFR1 amp ^[20]	FGFR inhibitors *	FGFR1 amp ^[20]	FGFR inhibitors *	0	N/A	
23	21	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [‡]	0	N/A	CDKN2A/B loss ^[10]	CDK4/6 inhibitors [‡]	
24	22-Relapse1	NF1 ^[21] FGFR1 amp ^[20] MYC amp ^[19]	MEK inhibitors * FGFR inhibitors * BET inhibitors [†]	NF1 ^[21] FGFR1 amp ^[20] MYC amp ^[19]	MEK inhibitors * FGFR inhibitors * BET inhibitors [†]	NF1 loss ^[21] FGFR1 amp ^[20] MYC amp ^[19]	MEK inhibitors * FGFR inhibitors * BET inhibitors [†]	
25	23	0	N/A	0	N/A	0	N/A	
26	24-Relapse1	NF1 ^[21]	MEK inhibitors*	NF1 ^[21]	MEK inhibitors*	NF1 loss ^[21]	MEK inhibitors*	
27	25	CDKN2A/B loss [10]	CDK4/6 inhibitors [‡]	PDGFRA amp ^[22]	PDGFRA inhibitors*	PDGFRA amp ^[22]	PDGFRA inhibitors*	
28	26	0	N/A	0	N/A			

* agents reviewed by the target-agent prioritization (TAP) committee and included in Pediatric MATCH trial
‡ agents that were reviewed by the TAP committee for Pediatric MATCH and are not included in the trial
^ agents that were supported by clinical trials or case reports.

References for Supplementary Materials

- Lih, C.J., Harrington, R.D., Sims, D.J., Harper, K.N., Bouk, C.H., Datta, V., Yau, J., Singh, R.R., Routbort, M.J., Luthra, R., et al. (2017). Analytical Validation of the Next-Generation Sequencing Assay for a Nationwide Signal-Finding Clinical Trial: Molecular Analysis for Therapy Choice Clinical Trial. The Journal of molecular diagnostics : JMD *19*, 313-327.
- Hiemenz, M.C., Ostrow, D.G., Busse, T.M., Buckley, J., Maglinte, D.T., Bootwalla, M., Done, J., Ji, J., Raca, G., Ryutov, A., et al. (2018). OncoKids: A Comprehensive Next-Generation Sequencing Panel for Pediatric Malignancies. The Journal of molecular diagnostics : JMD.
- Laskin, J., Jones, S., Aparicio, S., Chia, S., Ch'ng, C., Deyell, R., Eirew, P., Fok, A., Gelmon, K., Ho, C., et al. (2015). Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. Cold Spring Harbor molecular case studies *1*, a000570.
- Allen, C.E., Laetsch, T.W., Mody, R., Irwin, M.S., Lim, M.S., Adamson, P.C., Seibel, N.L., Parsons, D.W., Cho, Y.J., Janeway, K., et al. (2017). Target and Agent Prioritization for the Children's Oncology Group-National Cancer Institute Pediatric MATCH Trial. Journal of the National Cancer Institute *109*.
- Furumoto, Y., and Gadina, M. (2013). The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy 27, 431-438.
- Deenik, W., Beverloo, H.B., van der Poel-van de Luytgaarde, S.C., Wattel, M.M., van Esser, J.W., Valk, P.J., and Cornelissen, J.J. (2009). Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia 23, 627-629.
- Clarke, S., O'Reilly, J., Romeo, G., and Cooney, J. (2011). NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient shows an initial favorable response to imatinib therapy post relapse. Leukemia research 35, e131-133.
- Grobner, S.N., Worst, B.C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V.A., Johann,
 P.D., Balasubramanian, G.P., Segura-Wang, M., Brabetz, S., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature 555, 321-327.
- Ma, X., Liu, Y., Liu, Y., Alexandrov, L.B., Edmonson, M.N., Gawad, C., Zhou, X., Li, Y., Rusch, M.C., Easton, J., et al. (2018). Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371-376.
- Shapiro, G.I. (2017). Genomic Biomarkers Predicting Response to Selective CDK4/6 Inhibition: Progress in an Elusive Search. Cancer cell *32*, 721-723.

- O'Shea, J.J., Schwartz, D.M., Villarino, A.V., Gadina, M., McInnes, I.B., and Laurence, A. (2015). The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annual review of medicine 66, 311-328.
- Janne, P.A., Shaw, A.T., Pereira, J.R., Jeannin, G., Vansteenkiste, J., Barrios, C., Franke, F.A., Grinsted, L., Zazulina, V., Smith, P., et al. (2013). Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. The Lancet. Oncology *14*, 38-47.
- Quintas-Cardama, A., Tong, W., Manshouri, T., Vega, F., Lennon, P.A., Cools, J., Gilliland, D.G., Lee,
 F., Cortes, J., Kantarjian, H., et al. (2008). Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia 22, 1117-1124.
- Puissant, A., Frumm, S.M., Alexe, G., Bassil, C.F., Qi, J., Chanthery, Y.H., Nekritz, E.A., Zeid, R., Gustafson, W.C., Greninger, P., et al. (2013). Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer discovery *3*, 308-323.
- 15. Pratilas, C.A., Xing, F., and Solit, D.B. (2012). Targeting oncogenic BRAF in human cancer. Current topics in microbiology and immunology *355*, 83-98.
- Kiessling, M.K., Curioni-Fontecedro, A., Samaras, P., Atrott, K., Cosin-Roger, J., Lang, S., Scharl, M., and Rogler, G. (2015). Mutant HRAS as novel target for MEK and mTOR inhibitors. Oncotarget 6, 42183-42196.
- Franz, D.N., Belousova, E., Sparagana, S., Bebin, E.M., Frost, M., Kuperman, R., Witt, O., Kohrman, M.H., Flamini, J.R., Wu, J.Y., et al. (2013). Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet *381*, 125-132.
- Rader, J., Russell, M.R., Hart, L.S., Nakazawa, M.S., Belcastro, L.T., Martinez, D., Li, Y., Carpenter, E.L., Attiyeh, E.F., Diskin, S.J., et al. (2013). Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research *19*, 6173-6182.
- Bandopadhayay, P., Bergthold, G., Nguyen, B., Schubert, S., Gholamin, S., Tang, Y., Bolin, S., Schumacher, S.E., Zeid, R., Masoud, S., et al. (2014). BET bromodomain inhibition of MYC-amplified medulloblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 20, 912-925.
- Andre, F., Bachelot, T., Campone, M., Dalenc, F., Perez-Garcia, J.M., Hurvitz, S.A., Turner, N., Rugo, H., Smith, J.W., Deudon, S., et al. (2013). Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research *19*, 3693-3702.

- See, W.L., Tan, I.L., Mukherjee, J., Nicolaides, T., and Pieper, R.O. (2012). Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer research 72, 3350-3359.
- 22. Dai, X., Theobard, R., Cheng, H., Xing, M., and Zhang, J. (2018). Fusion genes: A promising tool combating against cancer. Biochimica et biophysica acta. Reviews on cancer *1869*, 149-160.