Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations

Jianzhong Chen^{1,*}, Xingyu Wang², Laixue Pang¹, John Z.H. Zhang^{2,3}, Tong Zhu^{2,3,*}

¹School of Science, Shandong Jiaotong University, Jinan 250357 China, ²NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China, ³Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China

ORCID:

Jianzhong Chen: 0000-0003-1558-4398

John Z. H. Zhang: 0000-0003-4612-1863

Tong Zhu: 0000-0001-7472-3736

^{*} To whom correspondence should be addressed. E-mail: chenjianzhong1970@163.com and jzchen@sdjtu.edu.cn. Correspondence may also be addressed to Tong Zhu. Tel: E-mail: tzhu@lps.ecun.edu.cn.

File S1. Force field parameters of HPA for Amber

%VERSION VERSION STAMP = V0001.000 DATE = 06/08/18 09:24:49 %FLAG TITLE %FORMAT(20a4) lig %FLAG POINTERS %FORMAT(10I8) %FLAG ATOM NAME %FORMAT(20a4) N1 C2 N3 C4 C5 C6 O6 N7 C8 N9 H1 H2 H3 H4 %FLAG CHARGE %FORMAT(5E16.8) -8.84510442E+00 8.56083654E+00 -1.14563600E+01 1.00823986E+01 -5.98055886E+00 1.33587681E+01 -1.15438270E+01 -5.04575487E+00 7.93398942E+00 -1.15347159E+01 6.22291545E+00 1.07147124E+00 5.89855851E+00 1.27738323E+00 %FLAG ATOMIC NUMBER %FORMAT(10I8) %FLAG MASS %FORMAT(5E16.8) 1.40100000E+01 1.20100000E+01 1.4010000E+01 1.20100000E+01 1.20100000E+01 1.20100000E+01 1.6000000E+01 1.4010000E+01 1.20100000E+01 1.4010000E+01 1.00800000E+00 1.00800000E+00 1.00800000E+00 1.00800000E+00 %FLAG ATOM TYPE INDEX %FORMAT($10\overline{18}$) %FLAG NUMBER EXCLUDED ATOMS %FORMAT(10I8) %FLAG NONBONDED PARM INDEX %FORMAT(10I8)

8 9 18 12 23 4 5 6 13 17 24 9 10 25 7 8 14 19 11 12 14 20 26 17 18 19 20 13 15 16 21 27 22 23 24 25 26 27 28 %FLAG RESIDUE LABEL %FORMAT(20a4) HPA %FLAG RESIDUE POINTER %FORMAT(10I8) 1 %FLAG BOND FORCE CONSTANT %FORMAT(5E16.8) 3.53830000E+02 3.56210000E+02 5.27310000E+02 4.50710000E+02 4.03490000E+02 3.69100000E+02 4.16130000E+02 3.54490000E+02 2.95350000E+02 6.52570000E+02 5.35140000E+02 %FLAG BOND EQUIL VALUE %FORMAT(5E16.8) 1.38100000E+00 1.37900000E+00 1.01300000E+00 1.31700000E+00 1.08200000E+00 1.36900000E+00 1.37300000E+00 1.38000000E+00 1.46800000E+00 1.21800000E+00 1.0100000E+00 %FLAG ANGLE FORCE CONSTANT %FORMAT(5E16.8) 1.10304000E+02 6.27370000E+01 8.71450000E+01 1.13811000E+02 6.65790000E+01 4.82850000E+01 7.38710000E+01 6.24610000E+01 9.10570000E+01 1.07603000E+02 9.26530000E+01 6.71870000E+01 7.04920000E+01 4.71010000E+01 8.67360000E+01 4.86910000E+01 6.86950000E+01 1.15504000E+02 6.12260000E+01 %FLAG ANGLE EQUIL VALUE %FORMAT(5E16.8) 2.14675590E+00 2.01934681E+00 1.96698691E+00 2.14762857E+00 2.15146829E+00 2.08148056E+00 1.84114862E+00 2.19073822E+00 1.94866095E+00 2.19387981E+00 1.86732857E+00 2.11795796E+00 1.91811767E+00 2.19038915E+00 2.16298747E+00 2.05163542E+00 1.98679641E+00 1.95860933E+00 2.12144862E+00 %FLAG DIHEDRAL FORCE CONSTANT %FORMAT(5E16.8) 4.75000000E+00 2.87500000E+00 2.5000000E+00 1.65000000E+00 4.0000000E+00 1.70000000E+00 2.0000000E+00 1.10000000E+00 1.05000000E+01 %FLAG DIHEDRAL PERIODICITY %FORMAT(5E16.8) 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 1.0000000E+00 2.0000000E+00 2.0000000E+00

%FLAG DIHEDRAL PHASE %FORMAT(5E16.8) 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 0.0000000E+00 3.14159400E+00 3.14159400E+00 %FLAG SCEE SCALE FACTOR %FORMAT(5E16.8) 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 0.0000000E+00 0.0000000E+00 %FLAG SCNB SCALE FACTOR %FORMAT(5E16.8) 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 0.0000000E+00 0.0000000E+00 %FLAG SOLTY %FORMAT(5E16.8) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 %FLAG LENNARD JONES ACOEF %FORMAT(5E16.8) 7.02078680E+05 7.01106848E+05 6.96551276E+05 7.76656876E+05 7.69642101E+05 8.49322032E+05 5.15491878E+05 5.17507491E+05 5.74782316E+05 3.76435470E+05 8.22085792E+05 8.20152428E+05 9.08092643E+05 6.04208667E+05 9.62429652E+05 1.52360475E+03 1.71458823E+03 2.01475241E+03 9.87857350E+02 1.82491629E+03 1.34728399E-01 5.06296765E+04 5.22195041E+04 5.87815925E+04 3.59538577E+04 5.96470418E+04 5.02830284E+01 2.97255425E+03 %FLAG LENNARD JONES BCOEF %FORMAT(5E16.8) 6.77820248E+02 5.97113873E+02 5.24668528E+02 6.20851625E+02 5.44830041E+02 5.65406768E+02 5.64804067E+02 4.98871431E+02 5.19385932E+02 4.69350655E+02 7.75261695E+02 6.82622272E+02 7.09588248E+02 6.46321327E+02 8.86629877E+02 1.57004457E+01 1.46824710E+01 1.57231024E+01 1.22938581E+01 1.81620725E+01 7.34107347E-02 1.01949445E+02 9.12729468E+01 9.56653235E+01 8.35449674E+01 1.16962018E+02 1.59752321E+00 1.38359132E+01 %FLAG BONDS INC HYDROGEN %FORMAT(10I8) 3 33 5 21 36 11 24 0 30 3 39 5 %FLAG BONDS WITHOUT HYDROGEN %FORMAT(10I8) 0 3 1 0 15 2 3 4 6 6 9 12 7 9 27 12 21 9 6 6

8	12	15	9	15	18	10	21	24	8
24	27	4	DOGDI						
%FLAGA	NGLES_I	NC_HYL	DROGEN						
%FORMA	.1(1018)	22	2	2	0	20	((2
22	3	33	21	3	14	30	6	20	3 16
23	0	12	21	30 24	14	15	14	30	10
21	24	39	19	24	21	30	14	27	24
0/ELACA	NCLES V	WITHOU		OCEN					
70FLAUA	T(1018)	WIIHUU		JUEN					
	2	6	1	0	15	12	2	0	15
19	5	2	1	15	15	12	5	0	13
10	4	12	0	15	5	2 27	10	9	12
21	9	12	12	15	12	27	27	9 24	12
12	11	و 77	12	13	12	9 24	12	12	15
12	15	15	12	21	17	24	24	27	13
				ZI EN	1 /	21	24	27	10
%FOPMA	T(1018)		IIIDKOU	LIN					
201 OKWA	(1010)	3	6	1	0	6	3	22	1
50	12	21	26	4	9	27	24	20	1
9	21	21	30	6	30	27	15	12	1
12	21	24	22	4	15	12	21	26	5
13	0	15	18	+ 7	30	12	15	18	2
30 27	24	21	36	6	30	0	-15	22	3
27	24	21	30	6	30	0	3	15	4 Q
30	21	24	59	8	12	24	-5	-15	8
30	21	-3	-0 27	8	12	24	-21	-30	0
%ELAG D		-2 4 IS WITH	-27 1011T HV	DPOGEN	J				
%FORMA	T(1018)	L5_will.	1001_111	DROOL	•				
0	3	6	9	1	0	15	-12	9	2
0	15	12	21	2	3	0	15	12	3
3	0	15	18	3	3	6	-9	12	1
3	6	9	27	1	15	Ő	3	6	4
6	9	12	21	5	6	9	-12	15	5
6	9	27	21	1	9	12	-21	24	6
9	12	15	18	2	9	27	-24	21	1
12	9	-27	24	1	12	21	-24	27	6
15	12	- 9	2.7	5	15	12	21	24	6
18	15	12	21	2	21	12	_9	27	5
12	6	-9	-27	8	15	9	-12	-21	8

12	0	-15	-18	9					
%FLAG EXC	LUDEI	D ATOMS I	LIST						
%FORMAT(10	0I8)								
2	3	4	5	6	7	8	11	12	3
4	5	6	7	10	11	12	4	5	6
8	9	10	11	12	5	6	7	8	9
10	12	13	14	6	7	8	9	10	11
13	14	7	8	9	10	11	12	13	8
11	9	10	13	14	10	13	14	13	14
12	0	14	0						
%FLAG HBO	ND_A	COEF							
%FORMAT(5)	E16.8)								
%FLAG HBO	ND_BO	COEF							
%FORMAT(5)	E16.8)								
%FLAG HBC	UT								
%FORMAT(5)	E16.8)								
%FLAG AMB	ER_AI	OM_TYPE							
%FORMAT(20	0a4)				- 1	1.5			
n cc nd	cd cc		na cc	nd hn	h5 hn	hS			
%FLAG IKE		IN_CLASSI	FICATIO	JN					
%FORMAI(20	(a4)						•		
MELACION		BLA BLA B	DLA BLA	BLA BLA	BLA B	LA BLA BL	A		
%FLAG JUIN	AKKA	41							
	018)	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
%FLAG IROT		0	0						
%FORMAT(1)	018)								
0	010)	0	0	0	0	0	0	0	0
Ő	ŏ	0 0	Ő	0	Ū	Ū	Ū	0	0
%FLAG RAD	IUS ŠF	ET	Ū						
%FORMAT(1)	a80)								
modified Bond	li radii ((mbondi)							
%FLAG RAD	II								
%FORMAT(5)	E16.8)								
1.55000000	E+00	1.70000000	E+00 1	.55000000	E+00	1.700000001	E+00	1.70000000	E+00
1.70000000	E+00	1.50000000	E+00 1	.55000000	E+00	1.700000001	E+00	1.550000001	E+00

1.3000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 %FLAG SCREEN %FORMAT(5E16.8) 7.9000000E-01 7.2000000E-01 7.9000000E-01 7.2000000E-01 7.2000000E-01 7.2000000E-01 8.5000000E-01 7.9000000E-01 7.2000000E-01 7.9000000E-01 8.50000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 %FLAG IPOL %FORMAT(118)

File S2. Force field parameters of 6AP for Amber

%VERSION VERSION STAMP = V0001.000 DATE = 06/13/18 10:13:21 %FLAG TITLE %FORMAT(20a4) 6AP %FLAG POINTERS %FORMAT(10I8) %FLAG ATOM NAME %FORMAT(20a4) N1 C2 N2 N3 C4 C5 C6 N6 N7 C8 N9 H1 H2 H3 H4 H5 H6 %FLAG CHARGE %FORMAT(5E16.8) -1.53613989E+01 1.67626938E+01 -1.68829610E+01 -1.44867285E+01 8.97994944E+00 -4.92366546E+00 1.43810392E+01 -1.74296300E+01 -9.71430813E+00 7.06478571E+00 -7.07025240E+00 7.74083304E+00 7.74083304E+00 8.08705674E+00 8.08705674E+00 1.29013884E+00 5.75278011E+00 %FLAG ATOMIC NUMBER %FORMAT(10I8) 1 %FLAG MASS %FORMAT(5E16.8) 1.40100000E+01 1.20100000E+01 1.40100000E+01 1.40100000E+01 1.20100000E+01 1.20100000E+01 1.20100000E+01 1.40100000E+01 1.40100000E+01 1.20100000E+01

1.40100000E+01 1.00800000E+00 1.00800000E+00 1.00800000E+00 1.00800000E+00 1.00800000E+00 1.00800000E+00 %FLAG ATOM TYPE INDEX %FORMAT(1018) %FLAG NUMBER EXCLUDED ATOMS %FORMAT(10I8) %FLAG NONBONDED PARM INDEX %FORMAT(10I8) %FLAG RESIDUE LABEL %FORMAT(20a4) 6AP %FLAG RESIDUE POINTER %FORMAT(10I8) %FLAG BOND FORCE CONSTANT %FORMAT(5E16.8) 4.14240000E+02 3.47060000E+02 5.29460000E+02 3.78570000E+02 3.49520000E+02 3.94620000E+02 4.50710000E+02 3.54490000E+02 4.03680000E+02 5.35140000E+02 %FLAG BOND EQUIL VALUE %FORMAT(5E16.8) 1.3390000E+00 1.3860000E+00 1.0120000E+00 1.39800000E+00 1.38400000E+00 1.35200000E+00 1.31700000E+00 1.38000000E+00 1.08200000E+00 1.01000000E+00 %FLAG ANGLE FORCE CONSTANT %FORMAT(5E16.8) 1.12063000E+02 1.09369000E+02 8.68490000E+01 7.03560000E+01 4.87870000E+01 1.07575000E+02 6.87670000E+01 8.76350000E+01 6.93770000E+01 4.69790000E+01 8.71670000E+01 8.61630000E+01 7.46080000E+01 1.15504000E+02 6.24620000E+01 4.71010000E+01 6.12270000E+01 3.95190000E+01 %FLAG ANGLE EQUIL VALUE %FORMAT(5E16.8) 2.04098890E+00 2.22110696E+00 2.14570870E+00 2.04587583E+00 2.02580453E+00 2.21813990E+00 2.09474507E+00 2.08950908E+00 1.97484090E+00 2.19108728E+00

2.06542352E+00 2.11097664E+00 1.83050210E+00 1.95860933E+00 2.19073822E+00 2.19038915E+00 2.12144862E+00 2.00922390E+00 %FLAG DIHEDRAL FORCE CONSTANT %FORMAT(5E16.8) 1.05000000E+00 4.8000000E+00 3.62500000E+00 3.00000000E-01 1.70000000E+00 4.7500000E+00 1.1000000E+00 %FLAG DIHEDRAL PERIODICITY %FORMAT(5E16.8) 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 %FLAG DIHEDRAL PHASE %FORMAT(5E16.8) 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 %FLAG SCEE SCALE FACTOR %FORMAT(5E16.8) 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 1.2000000E+00 0.0000000E+00 %FLAG SCNB SCALE FACTOR %FORMAT(5E16.8) 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00 0.0000000E+00 %FLAG SOLTY %FORMAT(5E16.8) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.000000E+00 %FLAG LENNARD JONES ACOEF %FORMAT(5E16.8) 8.49322032E+05 7.69642101E+05 6.96551276E+05 9.05243612E+05 8.17329084E+05 9.54790629E+05 9.08092643E+05 8.20152428E+05 9.58637891E+05 9.62429652E+05 2.01475241E+03 1.71458823E+03 1.79157166E+03 1.82491629E+03 1.34728399E-01 5.87815925E+04 5.22195041E+04 5.91752946E+04 5.96470418E+04 5.02830284E+01 2.97255425E+03 %FLAG LENNARD JONES BCOEF %FORMAT(5E16.8) 5.65406768E+02 5.44830041E+02 5.24668528E+02 7.17661669E+02 6.90283231E+02 9.06156687E+02 7.09588248E+02 6.82622272E+02 8.96356641E+02 8.86629877E+02 1.57231024E+01 1.46824710E+01 1.82287422E+01 1.81620725E+01 7.34107347E-02 9.56653235E+01 9.12729468E+01 1.18009316E+02 1.16962018E+02 1.59752321E+00 1.38359132E+01

%FLAG BO %FORMAT(%FLAG BONDS_INC_HYDROGEN %FORMAT(1018)										
6	33	3	6	36	3	21	39	3	21		
42	3	27	45	9	30	48	10				
%FLAG BO	NDS WIT	HOUT F	IYDROGE	EN							
%FORMAT(10I8)	_									
0	3	1	0	18	1	3	6	2	3		
9	1	9	12	1	12	15	4	12	30		
5	15	18	4	15	24	6	18	21	2		
24	27	7	27	30	8						
%FLAG ANGLES INC HYDROGEN											
%FORMAT(%FORMAT(10I8)										
3	6	33	5	3	6	36	5	12	30		
48	10	18	21	39	5	18	21	42	5		
24	27	45	15	27	30	48	16	30	27		
45	17	33	6	36	18	39	21	42	18		
%FLAG ANG	GLES WI	THOUT	HYDROG	EN							
%FORMAT(10I8)										
0	3	6	1	0	3	9	2	0	18		
15	3	0	18	21	1	3	0	18	4		
3	9	12	4	6	3	9	1	9	12		
15	3	9	12	30	6	12	15	18	7		
12	15	24	8	12	30	27	9	15	12		
30	11	15	18	21	12	15	24	27	13		
18	15	24	8	24	27	30	14				
%FLAG DIH	EDRALS	INC_HY	/DROGEN	1							
%FORMAT(10I8)										
0	3	6	33	1	0	3	6	36	1		
0	18	21	39	1	0	18	21	42	1		
9	3	6	33	1	9	3	6	36	1		
9	12	30	48	4	12	30	27	45	5		
15	12	30	48	4	15	18	21	39	1		
15	18	21	42	1	15	24	27	45	6		
24	27	30	48	5	45	27	30	48	5		
3	33	-6	-36	7	18	39	-21	-42	7		
45	30	-27	-24	7	12	27	-30	-48	7		
%FLAG DIH	IEDRALS	WITHO	UT_HYDI	ROGEN							
%FORMAT(10I8)		_								
0	3	9	12	2	0	18	-15	12	3		
0	18	15	24	3	3	0	18	15	2		

	3 6 9 9	9 3 12	12 9	30	2	18	0	3	6	2
	6 9 9	3 12	9	10						
	9 9	12		12	2	18	0	3	9	2
	9	12	-15	18	3	9	12	15	24	3
	,	12	30	27	4	12	15	18	21	3
	12	15	-24	27	2	12	30	-27	24	5
	15	12	-30	27	4	15	24	-27	30	6
	18	15	12	30	3	18	15	24	27	2
	21	18	15	24	3	24	15	-12	30	3
	0	9	-3	-6	7	15	30	-12	-9	7
	12	18	-15	-24	7	15	0	-18	-21	7
%FLA	G EXCL	UDED	ATOMS	LIST						
%FOR	MAT(10	I8) [–]		-						
	2	3	4	5	6	7	8	9	12	13
	14	15	3	4	5	6	7	8	11	12
	13	4	5	7	12	13	5	6	7	9
	10	11	12	13	17	6	7	8	9	10
	11	16	17	7	8	9	10	11	14	15
	16	17	8	9	10	11	14	15	9	14
	15	10	11	16	17	11	16	17	16	17
	13	0	15	0	17	0				
%FLA	G HBON	ND AC	OEF							
%FOR	MAT(5E	.16.8)								
%FLA	G HBON	D_BC	DEF							
%FOR	MAT(5E	(16.8)								
%FLA	G HBCU	JT								

%FORMAT(5E16.8)

%FLAG AMBER_ATOM_TYPE %FORMAT(20a4) nb ca nh nb ca ca ca nh nc cd na hn hn hn hn h5 hn %FLAG TREE CHAIN CLASSIFICATION %FORMAT(20a4) %FLAG JOIN_ARRAY %FORMAT(1018) 0 0 $\begin{array}{c} 0 \\ 0 \end{array}$ 0 0 0 0 0 0 0 0 0 0 0 0 0

%FLAG IROTAT %FORMAT(10I8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %FLAG RADIUS SET %FORMAT(1a80) modified Bondi radii (mbondi) %FLAG RADII %FORMAT(5E16.8) 1.5500000E+00 1.7000000E+00 1.5500000E+00 1.5500000E+00 1.7000000E+00 1.7000000E+00 1.7000000E+00 1.5500000E+00 1.5500000E+00 1.7000000E+00 1.55000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 %FLAG SCREEN %FORMAT(5E16.8) 7.9000000E-01 7.2000000E-01 7.9000000E-01 7.9000000E-01 7.2000000E-01 7.20000000E-01 7.2000000E-01 7.90000000E-01 7.90000000E-01 7.20000000E-01 7.9000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 %FLAG IPOL %FORMAT(118) 0

File S3. Force field parameters of HPA for Gromacs:

; lig.top created by rdparm2gmx.pl 2018 年 02 月 05 日 星期一 19:51:02 CST

; Include forcefield parameters #include "amber99sb-ildn.ff/forcefield.itp"

;[defaults]

; nbfunc	com	b-rule	gen-pa	irs	fudgeLJ fi	udgeQQ	
;1	2		yes		0.5	0.8333	3
[atomty	pes]						
;name	bond_type	mass o	charge	ptype	sig	ma	epsilon
0	0	0.0000	0.0000	Α	2.95992e-01	8.78640e	-01
n	n	0.0000	0.0000	Α	3.25000e-01	7.11280e	-01
hn	hn	0.0000	0.0000	А	1.06908e-01	6.56888e	-02

c	с	0.0000	0.0000	А	3.39967e-01	3.59824e-01
cd	cd	0.0000	0.0000	А	3.39967e-01	3.59824e-01
nd	nd	0.0000	0.0000	Α	3.25000e-01	7.11280e-01
cc	cc	0.0000	0.0000	А	3.39967e-01	3.59824e-01
na	na	0.0000	0.0000	А	3.25000e-01	7.11280e-01
h5	h5	0.0000	0.0000	А	2.42146e-01	6.27600e-02

[moleculetype] ; Name HPA

nrexcl 3

[atoms]

-	-		• •							1 5
;	nr	type	resnr residue	e atom	cgnr	cha	arge	mass	typeB	chargeB
	1	n	. 1	HPA	N1	1	-0.48540	14.00	0000	
	2	cc	1	HPA	C2	2	0.46980	12.00	0000	
	3	nd	. 1	HPA	N3	3	-0.62870	14.00	0000	
	4	cd	1	HPA	C4	4	0.55330	12.00	0000	
	5	cc	1	HPA	C5	5	-0.32820	12.000	0000	
	6	с	1	HPA	C6	6	0.73310	12.00	0000	
	7	0	1	HPA	06	7	-0.63350	16.00	0000	
	8	na	1	HPA	N7	8	-0.27690	14.000	0000	
	9	cc	1	HPA	C8	9	0.43540	12.00	0000	
	10	nd	. 1	HPA	N9	10	-0.63300	14.00	0000	
	11	hn	1	HPA	H1	11	0.34150	1.00	0000	
	12	h5	1	HPA	H2	12	0.05880	1.00	0000	
	13	hn	. 1	HPA	H3	13	0.32370	1.00	0000	
	14	h5	1	HPA	H4	14	0.07010	1.00	0000	

[bond	s]			
; ai	aj funct	r	k	
1	11	1	1.0090e-01	3.4326e+05
2	12	1	1.0790e-01	2.9790e+05
8	13	1	1.0110e-01	3.4024e+05
9	14	1	1.0790e-01	2.9790e+05
1	2	1	1.3800e-01	3.5648e+05
1	6	1	1.3450e-01	4.0016e+05
2	3	1	1.3350e-01	4.1388e+05
3	4	1	1.3760e-01	3.6116e+05
4	10	1	1.3760e-01	3.6116e+05
4	5	1	1.3710e-01	4.2175e+05

	5	8	1	1.3	3710	e-01	3.6719	e+05
	5	6	1	1.4	1620	e-01	3.1581	e+05
	6	7	1	1.2	2140	e-01	5.4225	e+05
	8	9	1	1.3	3710	e-01	3.6719	e+05
	9	10	1	1.3	3350	e-01	4.1388	e+05
[pairs]							
;	ai	aj func	t					
	11	3		1				
	4	12		1				
	4	14		1				
	4	13		1				
	5	14		1				
	11	5		1				
	6	12		1				
	6	13		1				
	11	7		1				
	10	13		1				
	11	12		1				
	13	14		1				
	1	4		1				
	1	8		1				
	2	5		1				
	2	7		1				
	2	10		1				
	6	3		1				
	3	9		1				
	3	8		1				
	4	7		1				
	6	10		1				
	6	9		1				
	7	8		1				
[angles	1						
;	ai	aj	ak fur	ıct	the	ta	cth	
	1	2	12		1	1.156	51e+02	4.25
	2	1	11		1	1.187	71e+02	4.02
	2	2	10		1	1.000		4 10

aj	ak funct	unc	ta cui	
2	12	1	1.1561e+02	4.2568e+02
1	11	1	1.1871e+02	4.0233e+02
2	12	1	1.2538e+02	4.1949e+02
8	13	1	1.2566e+02	3.9321e+02
1	11	1	1.1846e+02	4.1179e+02
	2 1 2 8 1	$\begin{array}{cccc} 2 & 12 \\ 1 & 11 \\ 2 & 12 \\ 8 & 13 \\ 1 & 11 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 12 1 1.1561e+02 1 11 1 1.1871e+02 2 12 1 1.2538e+02 8 13 1 1.2566e+02 1 11 1 1.1846e+02

8	9	14	1	1.2210e+02	4.1639e+02
9	8	13	1	1.2566e+02	3.9321e+02
10	9	14	1	1.2538e+02	4.1949e+02
1	2	3	1	1.2271e+02	5.9580e+02
1	6	5	1	1.1186e+02	5.8735e+02
1	6	7	1	1.2203e+02	6.3455e+02
2	1	6	1	1.2419e+02	5.4593e+02
2	3	4	1	1.0563e+02	5.9488e+02
3	4	10	1	1.2558e+02	5.8132e+02
3	4	5	1	1.1168e+02	6.0275e+02
4	10	9	1	1.0563e+02	5.9488e+02
4	5	8	1	1.0942e+02	6.1011e+02
4	5	6	1	1.2151e+02	5.4584e+02
5	4	10	1	1.1168e+02	6.0275e+02
5	8	9	1	1.0990e+02	5.7689e+02
5	6	7	1	1.2571e+02	5.7664e+02
6	5	8	1	1.1411e+02	5.8565e+02
8	9	10	1	1.1202e+02	6.2576e+02

[dihedr	als]										
;i j	k l	fu	ncC0	C5							
11	1	2	3	3	13.80720	0.00000	-13.80720	0.00000	0.00000	0.00000	;
4	3	2	12	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
4	10	9	14	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
4	5	8	13	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
5	8	9	14	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
11	1	6	5	3	20.92000	0.00000	-20.92000	0.00000	0.00000	0.00000	;
6	1	2	12	3	13.80720	0.00000	-13.80720	0.00000	0.00000	0.00000	;
6	5	8	13	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
11	1	6	7	3	29.28800	-8.36800	-20.92000	0.00000	0.00000	0.00000	;
10	9	8	13	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
11	1	2	12	3	13.80720	0.00000	-13.80720	0.00000	0.00000	0.00000	;
13	8	9	14	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
11	1	2	6	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
12	1	2	3	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
5	9	8	13	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
14	8	9	10	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
1	2	3	4	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
1	6	5	4	3	24.05800	0.00000	-24.05800	0.00000	0.00000	0.00000	;
1	6	5	8	3	24.05800	0.00000	-24.05800	0.00000	0.00000	0.00000	;

2	1	6	5	3	20.92000	0.00000	-20.92000	0.00000	0.00000	0.00000	;
2	1	6	7	3	20.92000	0.00000	-20.92000	0.00000	0.00000	0.00000	;
2	3	4	10	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
2	3	4	5	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
6	1	2	3	3	13.80720	0.00000	-13.80720	0.00000	0.00000	0.00000	;
3	4	10	9	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
3	4	5	8	3	33.47200	0.00000	-33.47200	0.00000	0.00000	0.00000	;
3	4	5	6	3	33.47200	0.00000	-33.47200	0.00000	0.00000	0.00000	;
4	10	9	8	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
4	5	8	9	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
4	5	6	7	3	24.05800	0.00000	-24.05800	0.00000	0.00000	0.00000	;
5	4	10	9	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
5	8	9	10	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
6	5	4	10	3	33.47200	0.00000	-33.47200	0.00000	0.00000	0.00000	;
6	5	8	9	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
7	6	5	8	3	24.05800	0.00000	-24.05800	0.00000	0.00000	0.00000	;
8	5	4	10	3	33.47200	0.00000	-33.47200	0.00000	0.00000	0.00000	;
5	3	4	10	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
6	4	5	8	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
5	1	6	7	3	87.86400	0.00000	-87.86400	0.00000	0.00000	0.00000	;

; Include Position restraint file #ifdef POSRES #include "posre.itp" #endif

; Include water topology #include "amber99sb-ildn.ff/tip3p.itp"

#ifdef POSRES_WATER
; Position restraint for each water oxygen
[position_restraints] ; i funct fcy 1000 fcx fcz 1000 1000 1 1 #endif

; Include topology for ions #include "amber99sb-ildn.ff/ions.itp"

[system] 14 system in water

[molecules] ; Compound nmols HPA 1 689 SOL NA 2 CL 2

File S4. Force field parameters of 6AP for Gromacs:

; lig.top created by rdparm2gmx.pl 2018 年 02 月 09 日 星期五 06:28:23 CST

; Include forcefield parameters #include "amber99sb-ildn.ff/forcefield.itp"

;[defaults]

; nbfund	e comł	o-rule	gen-pa	irs	fudgeLJ f	udgeQQ				
;1	2		yes		0.5	0.8333				
			2							
[atomtypes]										
;name	bond_type	mass c	harge	ptype	sig	gma epsilon				
nd	nd	0.0000	0.0000	Α	3.25000e-01	7.11280e-01				
cc	cc	0.0000	0.0000	Α	3.39967e-01	3.59824e-01				
nh	nh	0.0000	0.0000	Α	3.25000e-01	7.11280e-01				
hn	hn	0.0000	0.0000	Α	1.06908e-01	6.56888e-02				
nb	nb	0.0000	0.0000	А	3.25000e-01	7.11280e-01				
na	na	0.0000	0.0000	А	3.25000e-01	7.11280e-01				
ca	ca	0.0000	0.0000	А	3.39967e-01	3.59824e-01				
h5	h5	0.0000	0.0000	Α	2.42146e-01	6.27600e-02				

[moleculetype]

; Name nrexcl 3

6AP

[atoms]								
; nr	type r	esnr residue	atom	cgnr	ch	arge	mass typeB	chargeB
1	na	1	6AP	N9	1	-0.38800	14.000000	
2	cc	1	6AP	C8	2	0.38770	12.000000	
3	nd	1	6AP	N7	3	-0.53310	14.000000	
4	ca	1	6AP	C5	4	-0.27020	12.000000	
5	ca	1	6AP	C4	5	0.49280	12.000000	
6	nb	1	6AP	N3	6	-0.79500	14.000000	
7	ca	1	6AP	C2	7	0.91990	12.000000	
8	nh	1	6AP	N2	8	-0.92650	14.000000	
9	nb	1	6AP	N1	9	-0.84300	14.000000	
10	ca	1	6AP	C6	10	0.78920	12.000000	
11	nh	1	6AP	N6	11	-0.95750	14.000000	
12	hn	1	6AP	H1	12	0.31570	1.000000	
13	h5	1	6AP	H2	13	0.07080	1.000000	
14	hn	1	6AP	H3	14	0.42480	1.000000	
15	hn	1	6AP	H4	15	0.42480	1.000000	
16	hn	1	6AP	H5	16	0.44380	1.000000	
17	hn	1	6AP	H6	17	0.44380	1.000000	

[bonds]	[bonds]							
; ai	aj funct	r	k					
1	12	1	1.0110e-01	3.4024e+05				
2	13	1	1.0790e-01	2.9790e+05				
8	14	1	1.0140e-01	3.3572e+05				
8	15	1	1.0140e-01	3.3572e+05				
11	16	1	1.0140e-01	3.3572e+05				
11	17	1	1.0140e-01	3.3572e+05				
1	5	1	1.3500e-01	3.9355e+05				
1	2	1	1.3710e-01	3.6719e+05				
2	3	1	1.3350e-01	4.1388e+05				
3	4	1	1.3360e-01	4.1246e+05				
4	5	1	1.3870e-01	4.0033e+05				
4	10	1	1.3870e-01	4.0033e+05				
5	6	1	1.3420e-01	4.0426e+05				
6	7	1	1.3420e-01	4.0426e+05				
7	8	1	1.3640e-01	3.7572e+05				
7	9	1	1.3420e-01	4.0426e+05				
9	10	1	1.3420e-01	4.0426e+05				
10	11	1	1.3640e-01	3.7572e+05				

; ai aj funct 12 3 1 4 13 1 12 4 1 4 16 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 16 1	
4 17 1	
5 13 1	
12 6 1	
6 14 1	
6 15 1	
9 14 1	
9 15 1	
9 16 1	
9 17 1	
12 13 1	
1 10 1	
1 7 1	
2 6 1	
2 10 1	
3 6 1	
3 9 1	
3 11 1	
4 7 1	
5 9 1	
5 11 1	
5 8 1	
6 10 1	
7 11 1	
8 10 1	

[angles]										
; ai	aj	ak funct	theta cth							
1	2	13	1 1.2210e+02 4.1639e+02							
2	1	12	1 1.2566e+02 3.9321e+02							
3	2	13	1 1.2538e+02 4.1949e+02							
5	1	12	1 1.2559e+02 3.9857e+02							
7	8	14	1 1.1613e+02 4.1070e+02							
7	8	15	1 1.1613e+02 4.1070e+02							

10	11	16	1	1.1613e+02	4.1070e+02
10	11	17	1	1.1613e+02	4.1070e+02
14	8	15	1	1.1485e+02	3.3514e+02
16	11	17	1	1.1485e+02	3.3514e+02
1	5	4	1	1.1834e+02	5.8752e+02
1	5	6	1	1.2707e+02	5.9078e+02
1	2	3	1	1.1202e+02	6.2576e+02
2	1	5	1	1.1315e+02	5.7287e+02
2	3	4	1	1.0547e+02	6.0450e+02
3	4	5	1	1.1972e+02	5.8693e+02
3	4	10	1	1.1972e+02	5.8693e+02
4	5	6	1	1.2263e+02	5.7873e+02
4	10	9	1	1.2263e+02	5.7873e+02
4	10	11	1	1.2013e+02	5.8024e+02
5	4	10	1	1.1997e+02	5.6216e+02
5	6	7	1	1.1586e+02	5.7396e+02
6	7	8	1	1.1695e+02	6.1254e+02
6	7	9	1	1.2719e+02	5.9229e+02
7	9	10	1	1.1586e+02	5.7396e+02
8	7	9	1	1.1695e+02	6.1254e+02
9	10	11	1	1.1695e+02	6.1254e+02

[dihed	rals]										
;i j	k 1	fu	ncC0	C5							
12	2 1	2	3	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
4	3	2	13	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
12	2 1	5	4	3	2.51040	0.00000	-2.51040	0.00000	0.00000	0.00000	;
4	10	11	16	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
4	10	11	17	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
5	1	2	13	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
12	2 1	5	6	3	2.51040	0.00000	-2.51040	0.00000	0.00000	0.00000	;
6	7	8	14	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
6	7	8	15	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
9	7	8	14	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
9	7	8	15	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
9	10	11	16	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
9	10	11	17	3	8.78640	0.00000	-8.78640	0.00000	0.00000	0.00000	;
12	2 1	2	13	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
12	2 1	2	5	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	:
13	3 1	2	3	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	:

7	14	8	15	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
10	16	11	17	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
1	5	4	3	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
1	5	4	10	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
1	5	6	7	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
1	2	3	4	3	39.74800	0.00000	-39.74800	0.00000	0.00000	0.00000	;
2	1	5	4	3	2.51040	0.00000	-2.51040	0.00000	0.00000	0.00000	;
2	1	5	6	3	2.51040	0.00000	-2.51040	0.00000	0.00000	0.00000	;
2	3	4	5	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
2	3	4	10	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
5	1	2	3	3	14.22560	0.00000	-14.22560	0.00000	0.00000	0.00000	;
3	4	5	6	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
3	4	10	9	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
3	4	10	11	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
4	5	6	7	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
4	10	9	7	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
5	4	10	9	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
5	4	10	11	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
5	6	7	8	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
5	6	7	9	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
6	5	4	10	3	30.33400	0.00000	-30.33400	0.00000	0.00000	0.00000	;
6	7	9	10	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
7	9	10	11	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
8	7	9	10	3	40.16640	0.00000	-40.16640	0.00000	0.00000	0.00000	;
5	10	4	3	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
4	1	5	6	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
6	9	7	8	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
4	9	10	11	3	9.20480	0.00000	-9.20480	0.00000	0.00000	0.00000	;
											-

; Include Position restraint file #ifdef POSRES #include "posre.itp" #endif

; Include water topology #include "amber99sb-ildn.ff/tip3p.itp"

#ifdef POSRES_WATER ; Position restraint for each water oxygen [position_restraints] ; i funct fcx fcy fcz 1 1 1000 1000 1000 #endif

; Include topology for ions #include "amber99sb-ildn.ff/ions.itp"

[system] 17 system in water

[molecules]		
; Compound		nmols
6AP		1
SOL	776	
NA		2
CL		2

Table S1. 11	he parameters of the simulated	systems produced by the Leap	module in Amber ^a	
Ligands	RNA	Box size (Å)	Atom number of	Counter
-			system	ions(Na+)
	WT	92.736×70.287×60.137	34937	66
TIDA	A24U	89.960×70.742×59.445	33536	66
ПРА	U25A/A46G	90.120×71.1985×9.803	34137	66
	A24U/U25A/A46G	90.026×71.734×59.215	34080	66
	WT	92.736×70.287×60.137	34940	66
6AP	U25A/A46G/C74U	89.894×71.278×58.972	33677	66
	A24U/U25A/A46G/C74U	90.047×72.266×63.302	36566	66

Table S1. The parameters of the simulated systems produced by the Leap module in Amber^a

^aAll information were automatically produced by the Leap module in Amber by setting the parameters described in our manuscript.

	WT GR		A24U		U25A/A46G		A24U/U25A/A46G	
^a Hydrogen bonds	^b Occupancy	Distance (Å)	Occupancy (%)	Distance (Å)	Occupancy (%)	Distance (Å)	Occupancy (%)	Distance (Å)
	(%)							
°HPA@O6C74@N4H41	73.92	2.98	d		92.85	2.94	94.46	2.95
HPA@N3U51@N3H3	58.24	3.00	84.86	3.01	45.14	3.11	97.58	29.7
HPA@O6U22@O2'-HO2'			33.32	2.81				
U22@O2'HPA@N7-H3	80.17	2.93	95.44	2.89	91.22	2.91	91.24	2.96
C74@N3HPA@N1-H1	78.84	2.89			93.17	2.91	95.17	2.95
C74@O2HPA@N1-H1			98.58	2.96				

Table S2. Hydrogen bonding interactions of HPA with key residues in the WT and mutated GRs

^aHydrogen bonds are determined by the acceptor…donor distance of < 3.5Å and acceptor…H-donor angle of > 120°. ^bOccupancy(%) is defined as the percentage of simulation time that a specific hydrogen bond exists. ^cThe full lines indicate chemical bonds, and the dotted lines describe hydrogen bonding interactions. ^dThe symbol "--" indicates that occupancy of hydrogen bonds formed between HPA and nucleotides is lower than 20%.

method.

Figure S2. Root-mean-square deviations (RMSDs) of atoms P1, O3', O5', C3', C4' and C5' in GR: (A)-(D) the WT and mutated GRs with ligand HPA, (E)-(G) the WT and mutated GRs with ligand 6AP.

Figure S3. HPA-nucleotide interaction spectrum: (A) the WT GR, (B) the GR with mutation A24U, (C) the GR with mutations U25A/A46G and (D) the GR with mutations A24U/U25A/A46G. Only nucleotides of interaction energies stronger than 1.0 kcal/mol were labeled.

Figure S4. Hydrophobic interactions of HPA with key nucleotides in the WT and mutated GRs: (A) WT, (B) A24U, (C) U25A/A46G and (D) A24U/U25A/A46G. The key nucleotides and HPA are shown in stick modes and water molecules in the forest color balls. The magenta balls represent pseudoatoms forming hydrophobic interactions between 6AP and nucleotides.

Figure S5. Cluster analyses and superimpositions of corresponding structures: (A), (C), (E) and (G) depict the cluster analyses performed by using iMWK-Means method, and (A), (C), (E) and (G) respectively represent the WT, A24U, U25A/A46G and A24U/U25A/A46G GRs complexed with HPA; (B), (D), (F) and (H) display superimpositions of structures extracted from different clusters C1, C2 and C3. GRs are shown in cartoon modes and HPA is displayed in stick modes with green, red and yellow.

Figure S6. Cluster analyses and superimpositions of corresponding structures: (A), (C) and (E) depict the cluster analyses performed by using iMWK-Means method, and (A), (C) and (E) respectively indicate the WT, U25A/A46G/C74U and A24U/U25A/A46G/C74U GRs complexed with 6AP; (B), (D)and (F) show superimpositions of structures extracted from different clusters C1, C2 and C3. GRs are depicted in cartoon modes and 6AP is shown in stick modes with green, red and yellow.

Figure S7. Comparison of the eigenvalues plotted against the corresponding eigenvector indices obtained from the covariance matrix of C1' atoms in GR constructed from the equilibrated MD trajectories: (A) the WT and mutated GRs complexed with HPA and (B) the WT and mutated GRs complexed with 6AP.

Figure S8. Collective motions reflected by the first eigenvector corresponding to the principal component PC1 obtained by performing principal component analysis (PCA) on the equilibrated MD trajectories of the WT and mutated GRs complexed with HPA: (A) WT, (B) A24U, (C) U25A/A46G and (D) A24U/U25A/A46G. In this figure, the direction and length of the arrows respectively reflect the motion direction and strength of nucleotides in GR.

Figure S9. Collective motions reflected by the first eigenvector corresponding to the principal component PC1 obtained by performing principal component analysis (PCA) on the equilibrated MD trajectories of the WT and mutated GRs complexed with 6AP: (A) WT, (B) U25A/A46G/C74U and (C) A24U/U25A/A46G/C74U. In this figure, the direction and length of the arrows respectively reflect the motion direction and strength of nucleotides in GR.

Figure S10. Free energy landscapes and structural superimposition of the WT and mutated GRs with HPA: (A), (C), (E) and (G) depict free energy landscapes constructed using projection of MD trajectories on the first two principal components PC1 and PC2 from the diagonalization of covariance matrix, among which (A), (C), (E) and (G) separately correspond to the WT, A24U, U25A/A46G and A24U/U25A/A46G GRs; (B), (D), (F) and (H) display superimpositions of structures represented by free energy basins E1 and E2, and (B), (D), (F) and (H) respectively indicate the WT, A24U, U25A/A46G GRs. GRs are shown in cartoon modes and HPA is displayed in stick modes with green, red and yellow.

Figure S11. Free energy landscapes and structural superimposition of the WT and mutated GRs with 6AP: (A), (C) and (E) depict free energy landscapes constructed using projection of MD trajectories on the first two principal components PC1 and PC2 from the diagonalization of covariance matrix, among which (A), (C) and (E) separately correspond to the WT, U25A/A46G/C74U and A24U/U25A/A46G/C74U GRs; (B), (D) and (F) display superimpositions of structures represented by free energy basins E1 and E2, and (B), (D) and (F) respectively indicate the WT, U25A/A46G/C74U and A24U/U25A/A46G/C74U GRs. GRs are shown in cartoon modes and 6AP is displayed in stick modes with green, red and yellow