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Materials and Methods 
 
General 
 
 All plasmid constructs used in this study are listed in Table S1. Construct architecture 

and open reading frame sequences are described in Fig. S1. For constructs used in yeast ex-

periments, codon optimized versions of all ORFs were synthesized (IDT) and cloned into pRS-

derived integrating plasmids (20) (Stratagene). Strains were constructed by sequential plasmid 

transformations using standard lithium acetate-based transformation techniques and growth on 

selective auxotrophic minimal media (Sunrise). The background strain for all experiments in this 

study was S. cerevisiae YPH500 (α, ura3-52, lys2-801, ade2-101, trp1, his3, leu21) (Strata-

gene). Genotypes for experimentally tested strains are listed in Table S2. Experimental repli-

cates, unless otherwise noted, comprised distinct colonies picked from a transformation plate 

following construct integration and selection. 

 
 
Recombinant protein expression and purification 
 
 The design of plasmids used for recombinant protein expression are described in Fig. 

S1 and Table S1. Amino acid sequences were identical to those used in yeast, except where 

indicated in the figure. Synthetic sequences, codon optimized for E. coli expression, were syn-

thesized (IDT) and cloned into the pMAL-c5X vector (NEB), and the vectors transformed into 

BL-21 Rosetta (DE3)pLysS (Novagen) for recombinant expression. Cultures (500 mL, Luria 

broth supplemented with 1 µM ZnCl2) were grown under constant shaking at 37°C to 0.4 OD600 

and induced with 1 mM IPTG, whereupon cultures were transferred to 25°C and grown over-

night. Cells were pelleted, harvested by sonication into extraction buffer (20mM Tris, pH 8.0, 

100 mM NaCl, 20 mM MgCl2, 1 mM ZnCl2, 0.02% NP-40, 20% glycerol), and cleared lysates 

were incubated with a 0.5 mL bed volume of amylose resin (NEB) at 4°C for 3 h to bind fusion 

proteins. Resin was washed with 20 column volumes of wash buffer (20 mM Tris, pH 8.0, 100 



mM NaCl, 20 mM MgCl2, 1 µM ZnCL2, 10% glycerol), and for species harboring MBP (see Fig. 

S1-3), proteins were eluted with wash buffer supplemented with 10 mM maltose. For proteins 

requiring MBP cleavage (see Fig. S1-3), resin was mixed with 2.5 mL of wash buffer supple-

mented with 2 mM CaCl2 and 2 µg Factor Xa (NEB) and incubated overnight at 4°C. Protease 

was purified away from cleaved protein using a HiTrap benzamidine FF column (GE 

Healthcare). Proteins were dialyzed into buffer containing 20 mM Tris, pH 8.0, 100 mM NaCl2, 

50 µM ZnCl2, 5% glycerol and then concentrated to ~10 mg/mL prior to freezing at -80°C. Con-

centrations of all protein species were measured by Bradford assay. 

 
 
In vitro binding assay 
 
 In vitro binding assays were performed according to the methods of Jantz and Berg (34), 

with modifications. The probe sequences (IDT DNA) listed below were used for ZF-DNA binding 

experiments and represent the upper oligo of a temperature annealed duplex: 

 
43-8 nc=1: 
5’ - GAAfluorTTCGTCCTCACTCTGGATCC – 3’   
 
42-10 nc=1: 
5’ - GAATTCAfluorGACGCTGCTCGGATCC – 3’ 
 
43-8 nc=2 : 
5’ - GAAfluorTTCGTCCTCACTCTTCGGTCCTCACTCTGGATCC  - 3’ 
 
43-8 nc=3 : 
5’-GAAfluorTTCGTCCTCACTCTTCGGTCCTCACTCTTCGGTCCTCACTCTGGATCC– 3’   
 
 
where Afluor indicates the presence of fluorescein label on the thymidine in the bottom (reverse) 

oligo in the duplex, and underlined sequence indicates DNA binding motif (DBM) for single zinc 

finger arrays (ZF). Probes were generated by annealing an unlabeled top oligo to a labeled bot-

tom oligo in a 2:1 ratio, while binding competitor oligos were generated using unlabeled top and 

bottom oligos mixed at equimolar ratios. For PDZ binding experiments, fluorescein-labeled pep-

tide probe (ordered from Selleckhem) used for PDZ binding measurements contained the se-



quence VKESLV*, where the N-terminus was labeled with a FITC conjugate. Probe concentra-

tion was assessed by measuring Abs490. Competitor peptides were purified as MBP-ZF43-8 fu-

sions (see Figs. S1 and S3).  

  All assays were conducted in 20 mM Tris, pH 7.5, 100 mM NaCl2, 50 µM ZnCl2 buffer at 

25°C. Proteins, probes, and competitor oligos were added to a final volume of 300 µL. Probes 

were used at 10 nM in all experiments. For complex assembly experiments (Fig. 1C), indicated 

concentrations of MBP-ZF43-8 harboring a VKESLV* ligand (see Figs. S1 and S3) were titrated 

against 5 µM concentrations of clamp. Mixtures were allowed to equilibrate at 25°C for 10 min in 

Costar black 96-well plates prior to reading. Fluorescence anisotropy (FA) measurements were 

made at 494 nm using a SpectraMax M5 (Molecular Devices) fluorescence plate reader. For all 

measurements, anisotropy (𝑟) was calculated using the following equation: 

 

𝑟 =
𝐼∥ − 𝐼!
𝐼∥ − 2𝐼!

 

 

where 𝐼∥ and 𝐼! are parallel and perpendicular fluorescence, respectively. Fraction of bound 

probe was calculated using the following equation: 

 

𝑓! =
𝑟 − 𝑟!"##

(𝑟!"#$% − 𝑟) • 𝑄 + (𝑟 − 𝑟!"##)
 

 
 

where 𝑟!"#$% and 𝑟!"## are the anisotropy values for fully bound and fully unbound probe, re-

spectively. Each of these values was measured independently of binding curves with either a 

100x excess or absence of ZF (in the case of ZF-oligo binding) or PDZ (in the case of PDZ-

ligand binding). 𝑄 is the ratio of total fluorescence (measured at 454 nm) under 𝑟!"#$% and 𝑟!"## 

conditions. To obtain binding constants for ZF-probe and PDZ-probe interactions, binding data 

were fit to the following quadratic equation:  



 

𝑓! =
𝑃 + 𝑝𝑟𝑜𝑏𝑒 + 𝐾! − ( 𝑃 + 𝑝𝑟𝑜𝑏𝑒 + 𝐾!)! − 4 𝑃 • [𝑝𝑟𝑜𝑏𝑒]

2[𝑝𝑟𝑜𝑏𝑒]
 

 
 

where 𝑃  is the total concentration of either ZF or PDZ, 𝑝𝑟𝑜𝑏𝑒  is the total concentration of the 

oligo or peptide probe, and 𝐾! is the dissociation constant of the interaction. Competition bind-

ing curves were calculated by fitting competition binding curves to the following cubic equation 

(35): 

 

𝑓! =  
[𝑅𝐿∗]
𝐿!∗

=
[𝑅]

𝐾!! + [𝑅]
=  

2 ∙ (𝑎! − 3𝑏) ∙ cos 𝜃3 − 𝑎

3 ∙ 𝐾!! + 2 ∙ (𝑎! − 3𝑏) ∙ cos 𝜃3 − 𝑎
 

 
where 
 

𝑎 =  𝐾!! + 𝐾!! + 𝐿! + 𝐿!∗ − 𝑅!  
 

𝑏 =  𝐾!! ∙ 𝐿!∗ − 𝑅! + 𝐾!! ∙ 𝐿! − 𝑅! + 𝐾!! ∙ 𝐾!! 
 

𝑐 =  −𝐾!! ∙ 𝐾!! ∙ 𝑅!   
 

𝜃 =  cos!!
−2𝑎! + 9𝑎𝑏 − 27𝑐

2 ∙ (𝑎! − 3𝑏)!
 

 
 

where 𝑓! is fraction probe bound, [L*T] is the total probe concentration, [RT] and [R] are total 

and free concentrations of the ZF, respectively, while [LT] and [L] are total and free concentra-

tions of competitor. Kd1 is the affinity for TF and probe, while Kd2 is the affinity between TF and 

competitor. All binding curve fitting was done using MATLAB (Mathworks, Natick, MA) with func-

tion Anisotropy_Fit.m (code description in Table S3). 

 

Western blot 



  Four mL yeast cultures were grown in triplicate to mid log phase in YPGal (YEP + 2% 

galactose) media in the presence or absence of inducers. Cultures were pelleted and total pro-

tein extracted by direct lysis in 200 µL boiling SDS-PAGE sample buffer (Biorad) containing 5 

mM dithiothreitol. SynTFs were detected using mouse anti-FLAG (Sigma, #F3165) as primary 

and Alexa Fluor 488 anti-mouse as the secondary antibody (Cell Signaling, #4408). For hexoki-

nase loading controls, rabbit anti-hexokinase (US Biological Life Sciences, #H2035-02) and an-

ti-rabbit Alexa Fluor 647 (Cell Signaling, #4414) antibodies were used for primary and second-

ary probes, respectively. Western blot fluorescence was visualized using a Typhoon FLA 9000 

(GE Healthcare). Image J (NIH) software was used to quantitate the background-subtracted, 

integrated intensities of FLAG bands and then normalize to that of the corresponding hexoki-

nase bands.  

 

Flow cytometry 
   
  Yeast colonies were picked from plates and cultured overnight in 2 mL liquid SD media 

with appropriate auxotrophic dropouts. Cultures were diluted 1:50 into 500 µL of YPGal and 

grown for 16 h in the presence or absence of inducers. Prior to flow cytometry reading, cells 

were diluted 1:10 into 200 µL of PBS supplemented with 20 µg/mL cyclohexamide and incubat-

ed at 25°C, in the dark, for 3 h to allow for complete GFP fluorophore maturation. Typically, 

10,000 events were acquired using a BD LSRFortessa equipped with a high throughput sampler 

(BD Biosciences). Events were gated by forward and side scatter, and geometric means of the 

fluorescence distributions were calculated in FlowJo (Treestar Software) (Fig. S6A). 

 
 
Microfluidic device construction 
 
  Single-cell microfluidic experiments were performed using custom microfluidic devices 

designed to support monolayer growth of S. cerevisiae cells and enable rapid, automated on-

chip switching of liquid inputs (Fig. S16). To enforce monolayer growth, we used a previously 



reported cell trapping design in which chambers were constructed with heights matching the 

cylindrical diameters of yeast cells (36, 37). To this “flow layer”, we overlaid a “control layer” of 

integrated elastomeric valves to facilitate rapid on-chip switching of liquid inputs and outputs 

(Fig. S16B). We developed two variations of this common design. The first, termed ‘12S2T’, 

was designed to screen a maximum of 12 different strains with up to two distinct environmental 

time series (six strains per time series; Fig. S16B, top). The second, termed ‘12S6T’, also ac-

commodates a maximum of 12 strains with the possibility for six distinct time series (two strains 

per time series; Fig. S16B, bottom). 

  Devices were fabricated using soft lithographic techniques, as described previously (38, 

39). Two photoresist-based molds, corresponding to flow and control layers, were patterned 

with respective microchannel structures. The flow layer mold was constructed by first patterning 

SU-8 2 negative photoresist (MicroChem Corp.) at the appropriate feature height onto a silicon 

wafer then transferring the cell trapping chamber pattern from a high-resolution transparency 

photomask (CAD/Art Services, Inc.). Next, AZ4620 positive photoresist (Capitol Scientific, Inc.) 

was patterned at the greater flow channel feature height and aligned to the trapping chamber 

pattern before transferring. The completed flow layer mold was placed on a hotplate at 145°C 

for 1 min to reflow the photoresist and round the channel profiles for complete valve closure in 

assembled devices. The control layer mold was constructed by patterning SU-8 10 negative 

photoresist (MicroChem Corp.) onto a second silicon wafer and similarly transferring the control 

layer pattern from a photomask. 

  Devices were created by replica molding from the master molds. PDMS/Sylgard 184 

was mixed in a 10:1 ratio of elastomer base:curing agent, poured onto the control layer mold to 

a thickness of ~5 mm, and baked at 80°C for 3 h. Elastomer was prepared in a similar fashion 

and spun onto the flow layer master (3500 rpm for 60 s), and baked at 80°C for ~10 min. The 

cured control layer was peeled from the master and aligned over the flow mold under a micro-

scope. The multilayer devices were then baked for an additional 3 h, peeled from the master, 



cleaned, and finally sealed to pre-cleaned No. 1.5 glass coverslips (Fisher Scientific). Devices 

were operated using a previously-described microfluidic platform that integrates plumbing, 

hardware, and the software that controls valve and liquid delivery (37).  

 
 
Timelapse microscopy and image analysis 
  
  Imaging of microfluidic experiments was conducted using an Eclipse Ti-E inverted mi-

croscope (Nikon Instruments, Inc.) equipped with a Controlled Environment Microscope Incuba-

tor, a XYZ-motorized “Perfect Focus System”, and a Clara-E
 
charge-coupled device (CCD) 

camera (Andor Technology). Images were acquired at 100X magnification (Plan Apo Lambda 

100X, NA 1.45). Filters, light sources (Nikon LED and Lumencor SPECTRA X Light Engine), 

and stage movement were automatically controlled by the supplier’s software (NIS-Elements 

Advanced Research).  

  Colonies were picked from plates and cultured overnight under auxotrophic selection in 

2 mL liquid SD, and then diluted 1:20 into 0.4 mL YPGal and allowed to grow for ~20 h (OD 

~0.8) before seeding devices. Flow channels were loaded individually by flowing suspended cul-

ture through the ‘inlet’ ports until 2-10 cells of a particular strain were trapped in at least four 

growth chambers. Loaded devices were placed on the microscope stage and incubated at 30°C 

under constant YPGal flow for 5-6 h prior to experimental time course initiation. Cells were then 

subjected to a specific environmental time series by toggling on-chip valves to control the differ-

ent media inputs. Phase contrast and GFP images were collected every 15 min at programmed 

XY positions in three chambers per loaded flow channel. The duration of time-lapse imaging 

(following a short pre-growth in chambers) in all our experiments was limited to 42 h, after which 

accumulation of cells at efflux ports could affect the consistent delivery of media and growth of 

cells across all chambers. Following each experiment, images were analyzed by first using 

CellTracer (40) to segment single cells within each image. Single cell GFP fluorescence values, 

normalized by cell area, were extracted from segmented images using custom MATLAB soft-



ware (code available upon request). Background fluorescence in the device was subtracted 

from each segmented cell's fluorescence values. Fluorescence trajectories shown throughout 

this study represent the mean and standard deviation of all cells across multiple chambers from 

a single channel (except for the device precision experiments of Fig. S16D).  

 Fluorescence images shown in Fig. 4B were generated by segmenting cells and normaliz-

ing the background-subtracted fluorescence intensities for each cell to maximum circuit output 

under constitutive Dox. Strains producing mKate and GFP were false colored red and green, 

respectively. Cells boundaries determined by the segmentation software are overlaid on each 

image. 

 
 
Supplementary Text 
 
Goal: model-driven programming of circuit input-output behavior using cooperative as-

semblies 

 Our objective in this study was to explore how sophisticated non-linear signal processing 

behavior can emerge from synthetic gene circuitry regulated by cooperative complex assembly. 

The molecular basis of cooperativity has been classically understood through the paradigm of 

protein allostery. Another mechanism for generating cooperativity is through the self-assembly 

of multimeric complexes, where avidity created by initial binding events render subsequent 

higher-order assembly steps more energetically favorable. Transcription factor complex assem-

bly underpins decision making in regulatory networks, allowing network nodes to convert linear, 

graded inputs into non-linear, “all-or-none” output responses. In metazoan systems, gene net-

works are thought to utilize assembly-based computation to precisely interpret positional and 

temporal information during cell state decision-making processes like cell type differentiation 

and developmental tissue patterning. 



  We sought to capture essential features of multivalent, cooperative TF binding observed 

in natural promoter regulation using a simple, modular assembly scheme (Fig. 1A). In our de-

sign, cooperativity arises when synthetic transcription factors (synTFs) bound in tandem to a 

multisite promoter are coordinated by a multivalent co-factor (the “clamp”) (Fig. 1B). The con-

figuration of a synTF complex is defined by three tunable molecular features that determine the 

free energy of complex formation: the number of synTFs in the complex (nc), the affinities of the 

synTFs for the promoter (Kt), and the affinity of the clamp for the synTF (Kp). Understanding 

how complex configuration gives rise to regulatory behavior requires modeling the functional 

relationship between Kt, Kp, nc, and the free energy of complex assembly. Such a model could 

provide a powerful tool for circuit engineering by enabling the systematic computational explora-

tion of the behavioral space accessible to circuits regulated by cooperative assemblies. This 

would allow for identification of sets of circuit designs that fulfill a particular target behavior prior 

to physical construction. Motivated by these possibilities, we created a modeling framework 

consisting of the following modules:  

 

(1) A thermodynamic module that relates cooperative assembly to transcriptional output for 

a given complex configuration (nc, Kp, Kt). 

 

(2) A differential equation module that describes temporal dynamics for circuits composed of 

interacting synTF assemblies. 

 

Below we provide a detailed description of how we selected molecular parts used for synTF 

complex construction, experimentally measured their relevant properties, performed model pa-

rameterization based on these measurements, and then utilized the model to simulate circuit 

input/output behavior and guide circuit construction.  

 



Molecular parts library: selection and parameter measurement 

  As a first step toward construction of a molecular assembly scheme amenable to model-

ing, we identified a set of part variants comprising a range of Kt and Kp values, and then con-

ducted in vitro binding experiments to directly measure their binding affinities (see Materials 

and Methods) (Figs. S2-3). We used fluorescence anisotropy (FA) to measure affinities for two 

types of purified ZFs (43-8 ‘ZF1’ and 42-10 ‘ZF2’), and their respective oligo DBMs (20). For 

each ZF, we used previously described R-to-A ZF backbone mutations as affinity variants (20). 

We also generated DBM affinity series (DBM1, DBM2, etc.) for both ZFs by systematically mu-

tating nucleotides both in the core and directly flanking the core 9-bp recognition sequence 

(ZF1: aGAGTGAGGAc, ZF2: aGACGCTGCTc). Similarly, PDZ-ligand affinities were measured 

for two domains (syntrophin ‘syn’ and erbin ‘erb’) and their respective partner ligands (41, 42). 

For each pair, we obtained ligands of various affinities from published reports (S1, S2, …; E1, 

E2, …) (41, 42) (Fig. S3). Altogether, this yielded a set of component interactions consisting of 

15 ZF-DNA and 13 PDZ-ligand pairs with in vitro-measured values ranging from mid µM to low 

nM, providing us with broad, tunable control of Kt and Kp. 

  For in vivo experiments, cellular concentrations of synTF and clamp species ([TF]tot and 

[C]tot) were controlled by one of two small molecule-inducible expression systems. Both were 

selected for their reported non-cooperative dose response profiles. The first is a TetR-regulated 

pGAL1 expression system modified to have a linearized, non-cooperative dose-response 

(ncTET) (21) (Fig. S4A). The second is a non-cooperative system that utilizes a chimeric estro-

gen receptor transactivator (ncZEV) (22) (Fig. S4B). ncTET and ncZEV are induced by anhy-

dro-tetracycline (ATc) and estradiol (EST), respectively. To quantitatively characterize dose re-

sponses for these expression systems, we constructed yeast strains harboring either GFP or 

FLAG-tagged synTF1 (derived from ZF1) placed under expression system control. Dose re-

sponse curves were obtained for both systems by flow cytometry analysis of inducer-dependent 

GFP expression (see Materials and Methods). After subtracting background/intrinsic fluores-



cence, each dose response was fit to the following Hill model (Fig. S4, code description in Ta-

ble S3): 

 

𝐹!"# = 𝐹!"# + ((𝐹!"# − 𝐹!"#) ∙ [𝐼]!! (𝐸𝐶!"!! + [𝐼]!!)) 

 

where [I] is the concentration of chemical inducer, nH the Hill coefficient, EC50 the chemical in-

ducer concentration at half-maximal response, and Fmin and Fmax the minimum and maximum 

fluorescence values measured in the dose response curves. nH, EC50, and the fold change of 

GFP fluorescence (𝐹!"#/𝐹!"#) were extracted from this fit and used during model parameteriza-

tion (see below) as a proxy for the fold change of protein concentration resulting from promoter 

induction. In order to validate GFP as an accurate surrogate for expression, ncTET induction 

was assessed by Western blot (Fig. S4B). Fitted values were found to be similar for both sys-

tems: EC50 (60.7 ng/mL by flow cytometry compared to 107 ng/mL by western) and nH (1.53 by 

flow cytometry compared to 1.14 by western). Additionally, we measured constitutive fluores-

cence from a pADH1 promoter driving GFP expression for different integration loci (Fig S4A).  

 

Demonstrating complex formation in vitro 

  In order to provide a direct demonstration that our molecular components (DNA, synTF, 

and clamp) are capable of cooperative assembly, we used the FA binding assay to test the ef-

fect of both clamp and complex size (nc) on the cooperativity (nH) and midpoint (EC50) of a 

synTF titration (Fig. 1C). Species used in the binding assay are described in Fig. S1, and de-

scriptions for protein purification and the binding assay are in Materials and Methods. For the 

nc = 2 binding curves depicted in Fig. 1C, an oligo probe with two tandem DBMs and a clamp 

with two tandem PDZ domains was used. Probe and clamp species with three repeats were 

used for the nc = 3 binding curve. Adding clamp to the system (2 µM) increased the affinity of 

synTFs for the probe (EC50 of 210 nM to 18 nM) and cooperativity (nH = 1.07 to 1.81). This effect 



was PDZ-binding dependent, as indicated by the absence of corresponding affinity and cooper-

ativity increases with titration of synTFs containing non-binding ligands (nb). Increasing nc to 3 

further enhanced both affinity and cooperativity (EC50 = 5.1 nM, nH = 2.55), verifying that greater 

stability is conferred by higher complex valency. 

  To confirm that nearly all of the change in anisotropy measured during complex for-

mation results from binding of MBP-ZF (and not clamp) to the DNA probe, we conducted a con-

trol experiment (Fig. S5) where a single PDZ domain was titrated into a mixture containing 

probe with fully-saturated MBP-ZF binding. Addition of the PDZ made a minimal contribution 

(<5%) to the overall anisotropy signal, confirming that binding of species composed of low mo-

lecular weight PDZ domains have little effect on the anisotropy of synTF-probe complexes. 

  

Optimizing cooperative complex molecular configuration 

  Individual domains comprising both synTF and clamp species are interconnected by 

flexible GS-repeat linkers (Fig. S1). These occur between ligand and ZF in the synTF, and be-

tween PDZ domains in the clamp. We postulated that free energy of complex assembly would 

depend heavily on domain interdistance, and thus attempted to identify a set of linker lengths 

that would best facilitate complex formation and transcriptional activation (Fig. S6B). We con-

structed circuits in which synTF expression is driven by ncTET, clamp is constitutive expressed 

with pAHD1, and nc = 2 complex assembly takes place at a GFP reporter locus. Within this con-

text, we tested three GS linker lengths for synTF1 (0, 5, 10 AAs) against three clamp linker 

lengths (5, 10, 20 AAs) at three different Kp values. Complex assembly at a GFP reporter locus 

was assessed by flow cytometry (see Materials and Methods). Induced (ATc) and uninduced 

circuits were compared in strains in which clamp was either present or absent. We assessed the 

ability of the synTF and clamp to induce higher GFP expression when co-expressed, and the 

best performing set of linkers (5 GS for synTF and 20 GS for clamp) was selected for circuit 

construction throughout the paper (Fig. S6B). 



 

Thermodynamic model: background and motivation 

  We selected a statistical thermodynamic framework to model cooperative complex as-

sembly. Similar models have been used to investigate a wide range of biological processes, in-

cluding transcription, bacterial chemotaxis, and ion channel mechanism (14, 23, 24, 43). The 

fundamental principle underlying such a model is the notion of the microstate: one of many dis-

tinct ways that species making up a macroscopic system can be arranged. For a multi-part, self-

assembling molecular system, relevant microstates are represented by the fully intact complex, 

as well as any sub-complexes that exist along a pathway to complete assembly. Construction of 

a model proceeds by first enumerating these complexes, and then calculating their relative free 

energies (or, equivalently, their relative probabilities) based on the number and affinity of inter-

actions within each state. When using such an approach to study natural systems, predictive 

power is often limited by either incorrect assumptions about a system’s molecular features, or 

the presence of unaccounted-for microstates. It is our assertion that by modeling a synthetic 

system, we obviate many of these concerns. For our synTF/clamp complexes, microstates 

comprise any distinct promoter-bound configuration of synTFs or clamp. Thus, the set of states 

available for any given configuration are pre-accounted, with interaction affinity, specificity, and 

concentration of constituent species fully defined. Moreover, the physical microscopic quantities 

that we use to describe free energy changes associated with each microstate correspond to af-

finities (Kt and Kp), over which we have tunable control. Thus, consistent with a major goal of 

our work, this class of model gives us a quantitative framework for understanding how to tune 

assembly using the molecular ‘knobs’ conferred by the variability of our molecular parts. As 

such, this framework represents a simple, first principles model tailored to our synthetic biology 

goal of providing insight and predictive power into the design of circuits that utilize our TF as-

sembly scheme to drive target transcriptional behaviors. Studies of natural systems have identi-

fied many (other) factors that can affect the process of transcription in eukaryotic cells. Howev-



er, for our synthetic study, many of these factors are not explicitly varied (and in some cases, 

are controlled across our engineered strains), and thus our model does not account for them. 

Instead, the model is designed to allow us to dissect specifically the effects of varying assembly 

parameters on programmed complex formation and transcriptional regulation. Below, we pro-

vide a description of the model framework and discuss the assumptions that underlie it. Ulti-

mately, we design experiments that enable us to test the predictive power of the model. In-

stances where we observe significant deviation between model and experiment may be interest-

ing starting points for incorporating higher-order factors and elaborating on our simple model in 

future studies. 

 

Model description 

  Constructing a thermodynamic model for synTF complex assembly involves first identify-

ing all possible promoter-bound synTF/clamp configurations for a given nc, and then assigning 

to each a characteristic transcriptional rate (r). A weight (w) describing the change in free ener-

gy for all interactions within each state is computed based on intracellular component concen-

trations and dissociation constants. Relative transcriptional contributions from each state are 

given by w*r. Because states within the system are assumed to be in thermal equilibrium with 

one another (which holds true as long as transcription initiation is much slower than rates of 

synTF binding), the following equation can be used to compute promoter output by averaging 

relative transcriptional contributions from each state:  

 

𝑡𝑥𝑛 = 𝑟! ∙ 𝑤!
!

𝑤!
!

 

 

where i are transcriptionally active states and j are all promoter states. 



  In Fig. S7, we apply this framework to the assembly of an nc = 2 promoter complex. To 

model complex formation under different synTF and clamp expression levels, we first distinguish 

promoter-bound complex assembly from interactions between promoter-dissociated species in 

the nucleus. Hill equations relate inducer concentration to component expression, while mass-

action equations describing formation of non-promoter complexes (synTF•Clamp and 

2*synTF•Clamp) as a function of total synTF and clamp expression levels ([TF]tot, [C]tot) dictate 

the concentrations of species available to bind to the promoter. We assume these equilibria to 

be unaffected by promoter complex formation. Next, the thermodynamic promoter states are 

enumerated. Under conditions with both synTF and clamp present, the promoter can assume 

one of five possible states: unoccupied, one synTF bound, two synTFs bound, one synTF 

bound to clamp, and the full assembly containing two synTFs plus clamp. States containing a 

single bound synTF are degenerate—they can exist in one of two configurations assumed to be 

energetically and transcriptionally equivalent. Of the five states, four contain at least one bound 

synTF and are therefore transcriptionally active. Binding energies for each state are calculated 

based on the following parameters: (1) concentrations of free synTF and clamp ([TF] and [C]), 

which are related by chemical equilibria to [TF]tot and [C]tot, (2) dissociation constants for ZF-

DNA (Kt) and PDZ-ligand (Kp) interactions, and (3) a constant (c2) that accounts for assembly 

cooperativity by acting as an interaction constant multiplier for the state in which two synTFs are 

bound to clamp (14, 43). The values of w are then multiplied by the degeneracy of each state. 

Finally, each state is assigned an r proportional to the number of bound synTFs. We assume 

that neither synTF position within the DBM array, nor the presence of the clamp itself, influence 

r.  For clarity, the expression describing the nc = 2 system is written explicitly in Fig. S7. To 

model nc > 2 complexes, we generalize the nc = 2 case such that the number of states and their 

corresponding r and degeneracy are functions of nc and the number (N) of bound synTFs, and 

cn is a function of N (Fig. S8, MATLAB function MeanTxn_OneTF.m in Table S4). 



  There are a number of assumptions to the model. First, it does not explicitly account for 

the broader yeast chromatin context in which transcriptional regulation is occurring. Studies 

have proposed, for example, that nucleosome positioning may affect transcriptional output, such 

as aspects of the transcriptional dose response (44). Second, built into the thermodynamic 

model is an assumption of a single rate limiting step in transcription. Studies have proposed that 

eukaryotic transcription is a multi-step process, including activator-dependent nucleosome re-

modeling and transcription initiation (45, 46), and that these remodeling dynamics may affect 

gene expression timing (45, 47). In general, these and many other factors can affect the pro-

cess of transcription and there are exciting efforts aimed at discovering and characterizing them 

in the context of natural systems. However, our synthetic study does not explicitly vary these 

factors and in fact by using designed synthetic promoter/reporter systems, we can to some de-

gree control for them. For example, all of our reporters feature the same minimal CYC1 promot-

er design, which lacks endogenous upstream regulatory sequences to minimize endogenous TF 

recruitment, signaling crosstalk, and other undesired regulatory events (19, 48). Additionally, our 

reporters are all single integrated into one of two genetic loci, allowing us to control for certain 

chromatin context effects across the circuits/strains being compared. This provides a useful 

background for isolating and testing the effect of altering assembly parameters (over which have 

tunable control) on transcriptional behaviors. An additional simplifying assumption in our model 

is that transcriptional rate, r, is linearly proportional to the number of bound synTFs. There is 

little experimental evidence or consensus to support any specific relationship between the num-

ber of bound TFs and transcriptional rate in eukaryotes (49). As such, we chose a simple linear 

relationship, which is both consistent with other recent theoretical work (49) and with our goal of 

developing the simplest model for designing circuits using our TF assembly scheme. Once 

again, instances where we observe significant deviation between model and experimental re-

sults could be intriguing starting points for implementing more complicated relationships and 

more generally for elaborating on our simple model in future studies. 



 

Fitting and model parameterization 

  In order to turn our model into a generalizable tool that can be used to predict regulatory 

functions for arbitrary complex configurations, we conducted parametric fitting on a set of circuit 

induction data (Figs. 1D,E). Experimentally measured values for in vitro component binding af-

finity (Figs. S2-3) were used as initial parameter guesses to constrain the fit (Figs. S7-9). These 

values account for affinities between interacting complex components (Kt, Kp). Fitting allows us 

to infer parameter values for which we do not have a priori estimates: the complex cooperativity 

factor (cn) and effective maximum in vivo concentrations of complex components ([TFmax] and 

[Cmax]). By fitting data from configurations featuring different nc, Kt, and Kp under various pro-

moter induction levels (Figs. 1D,E), we obtain generalizable functional relationships between 

not only complex size (nc) and cn, but also between promoter induction ([ATc], [EST]) and [TFtot] 

and [Ctot].  

  The seven circuits comprising the model fitting dataset are shown in Fig. 1E. Compo-

nent expression is driven by ncTET (synTF) and ncZEV (clamp). Each circuit has a slightly dif-

ferent complex configuration (Fig. 1E): for nc = 2 complexes we varied Kt (6.5 nM, 13.6 nM, 143 

nM) and Kp (0.88 µM, 1.97 µM, 27.3 µM) affinities, while nc was varied from 2 - 4 with fixed Kt 

and Kp values of 13.6 nM and 1.97 µM, respectively. For each of the strains in this set, input-

output dose response surfaces (12 ATc by 12 EST doses; 144 total data points) were generated 

by measuring GFP expression as a function of inducer concentration (see Materials and Meth-

ods). A global fit on all surfaces was performed using the trust-region-reflective algorithm im-

plementation of Matlab’s nonlinear least-squares solver (Fig. 1E, code description in Table S3). 

Parameters describing the expression of synTF and clamp by our induction systems (nH , EC50, 

and species fold change) were fixed to experimentally measured values (Fig. S4). Unmeasured 

values [TF]max, [C]max, and cn were unconstrained during the fit. Measured affinity values (Figs. 

S2-3) were constrained to a 4-fold bound, chosen initially based on reported comparisons of 



binding affinities in vitro vs. in vivo for well-characterized TFs (50). To test our fitting methods, 

we performed multiple parameter fits across a broad range of fitting bounds and found that the 

goodness of fit of the model, evaluated by mean absolute error (MAE), as well as the fitted affin-

ity values do not change for bounds larger than 4-fold (Fig. S9B). As show in Fig. 1E, our fitted 

solution revealed good correspondence between model and data across the entire fitted data 

set (MAE = 0.088). 

  The resulting set of fitted parameters represents a transformation of experimental meas-

urements into values that describe effective component behavior in model space. For example, 

Kt and Kp values were fit-adjusted to optimize [TF]max, [C]max, which serve as de facto propor-

tionality constants relating component affinity to expression system induction. To obtain model 

space-transformed values for the full set of values measured in Figs. S2-4, we used linear ex-

trapolation. First, we extrapolated the expression level of pADH1-Clamp based on GFP expres-

sion data from S4 (Fig. S10A). In order to obtain a full set of affinity values (Kt and Kp) meas-

ured in Figs. S2-3, we chose a log-log relationship to extrapolate model affinities from our 

measured values (Fig. S10B). Though absolute affinities could differ in vitro and in vivo, multiple 

studies have shown that relative differences between biochemically measured affinities corre-

late well with relative differences in in vivo activity (51), thus making this relationship a reasona-

ble approximation. Additionally, cn values for configurations with nc > 4 were extrapolated follow-

ing a log linear fit of the three fitted clamp constants using the following equation (Fig. S10C, 

code description in Table S3):  

 

𝑐! =  10!∙(!!!) 

 

where k is a scaling term which was determined from the fit to be 2.18. We chose this relation-

ship because it represents the simplest approximation for the role the clamp plays in affecting 

the free energy of the complex. We assume that each clamped synTF contributes the same 



amount of free energy to the complex, in which case the Kd of binding, being proportional to the 

exponential of the free energy of the complex, will depend exponentially with the number of 

binding sites (n).  

 

Relating cooperative complex configuration to circuit behavior  

  We used the parameterized thermodynamic model to quantitatively map the relationship 

between complex configuration and circuit behavior for a number of different circuit motifs (Figs. 

2-4, S11-22). In each case, we generated a database of all possible complex configurations 

(“configuration space”) based on the combinatorics furnished by our available part space. Tran-

scriptional input/output functions were simulated for each configuration, and then used to com-

pute circuit behavior variables (“behavior space”). 2D behavior space plots for relevant variables 

were generated and used to identify relationships between regions of circuit behavior space and 

characteristics of corresponding complex configuration space.  

 

Mapping circuit behavior space for single-input circuits  

  One fundamental signal processing function that cellular regulatory networks perform is 

the conversion of a non-cooperative regulatory input (dose) into a nonlinear, switch-like output 

(response). Nonlinear dose response can emerge from cooperative assembly when the titration 

of a molecular species into a system dominated by weak, low valency interactions leads to the 

formation of stable, high valency complexes. The greater the energetic difference between low 

and high valency regimes, the greater the nonlinearity in the relationship between concentration 

of the titrated species (input) and complex formation (output). In Fig. S11 we use the parameter-

ized model to demonstrate how nonlinearity can arise from titration and complex formation for a 

single synTF. We evaluated how the free energy state distribution for a synTF-clamp complex 

changes by altering configuration features. Total Gibbs free energy change (∆G) for each state 



was calculated by summing binding energies from each of the constituent binary interactions. 

∆G for each interaction (Kd) was calculated using the following equation:  

 

∆𝐺 =  −𝑘!𝑇 ln
𝐾!
𝑐!"#

 

 

where 𝑘! is the Boltzmann constant (J•K-1), 𝑇 is temperature (K), 𝐾! is disassociation constant 

(M), and 𝑐!"#  is a standard reference concentration of 1 M. 

   As seen in Fig. S11, for a low valency nc = 2 configuration, very few states are available 

for occupancy by complex components, and energetic separation between states is relatively 

small; plotting txn as a function of synTF concentration, we see a non-cooperative dose re-

sponse (nH = 1.0). Very little nonlinearity (nH = 1.02) is introduced by increasing complex valency 

(e.g., from nc = 2 to 5) despite the greater overall number of states as well as an increase in the 

free energy differences between them. Here, higher energy binary synTF-promoter states domi-

nate transcriptional output at lower synTF concentrations, while much lower energy, clamp-

bound ternary states dominate at higher concentrations. However, when synTF affinities are 

lowered for DBM (large Kt values) and raised for the clamp (small Kp values) within the nc = 5 

complex, we see a sharp jump in dose response cooperativity (nH = 3.1), as a result of binary 

and ternary states becoming energetically separated (Fig. S11). Thus, our model suggests that 

it should be readily possible to use different Kt, Kp, and nc regimes to program dose-response 

cooperativity, tuning to either non-cooperative or highly switch-like activation profiles. 

  In order to determine the extent to which our parts collection enables dose response tun-

ing, we used our parameterized model to map the relationship between accessible complex 

configuration space and behavior space for an inducible single input circuit (Fig. 2B). We mod-

eled steady-state GFP output in response to ncTET-driven transcription of synTF1, which as-

sembles with constitutively expressed (pADH1) clamp (MATLAB function MeanTxn_OneTF.m in 



Table S4). We reasoned that, because the induction profile for ncTET—the first node in the cir-

cuit—is non-cooperative with respect to ATc input (nH = 1.53; Fig. S4), it should be possible to 

manipulate the overall cooperativity of circuit input-output by programming complex assembly at 

the second node. Complex configuration space was obtained from the combinatorial enumera-

tion of our parts set: Kt (13 affinities) + Kp (15 affinities) + nc (2-5) + (with and without clamp) = 

855 total configurations (Fig. S12A). Using our parameterized thermodynamic model, ATc dose 

response titrations were simulated for the entire configuration space (ATc range = 100-104 

ng/mL) and resulting dose responses were fit to the following Hill function (code description in 

Table S3): 

 

𝑡𝑥𝑛!"#$ =  !∙[!"#] !!
!"!"![!"#]!!

+ 𝑐  

 

where txnnorm is the normalized transcriptional output for a circuit with a given configuration, 

EC50 is the ATc concentration at which transcriptional activation is half-maximal, nH is the Hill 

coefficient, a is the max activation level, and c is basal expression for each circuit. Both non-

activating configurations (a/c < 2) and configurations with high basal expression (c > 0.2) were 

omitted. EC50 and nH values were extracted from the remaining configurations (603) and plotted 

as a two-dimensional behavior space (Fig. 2B). 

  As demonstrated by the scatter in Fig. 2B, the nH distribution of low nc (1 - 3) configura-

tions are narrow and mostly non-cooperative, while higher order configurations (nc = 4 and 5) 

show broader distributions, granting access to regions of more switch-like circuit behavior. For 

both low and high valency complexes, EC50 is tunable over approximately 1.5 logs (~5 - 150 

ng/mL), a range which is constrained by the dose response profile of the ncTET system (EC50 = 

60.7 ng/mL). Plotting parameter profiles for configurations in different sectors of the behavior 

space (Fig. S12B) revealed that non-cooperative dose responses were enriched for weak 



clamp interactions (large Kp values), while the most cooperative configurations were highly en-

riched for both weak DNA (large Kt) and strong clamp (small Kp) interactions in a manner con-

sistent with our earlier thermodynamic analysis (Fig. S11). We selected a number of configura-

tions evenly distributed across the scatter to test experimentally (Fig. S12B-C, Fig. 2B). ATc 

dose response profiles (ATc = 2182, 1190, 649, 354, 193, 105, 57.5, 31.3, 17.1, 9.32, 5.09, 

2.77, 1.51. 0.83 ng/mL) were determined using the same method as in Fig. S4 and data were fit 

to the above Hill equation to extract EC50 and nH values. Within this experimental set, we includ-

ed configurations without clamp and with higher affinity synTF binding sites (strains #2-5 in Fig. 

S12B-C) to test for potential indirect sources of cooperativity(44) that are not dependent on 

clamp. With increasing numbers of higher affinity binding sites (nc = 2, 3, 4, 5), we did not ob-

serve increases in cooperativity (nH = 1.42, 1.58, 1.36, 1.45, respectively), and all Hill coefficient 

values were close to that of the ncTET induction system (nH = 1.53). This result suggests that 

the clamp plays an essential role in mediating cooperative dose responses in our system. 

  Finally, comparing model-predicted and experimentally-obtained values of nH and EC50 

for each configuration revealed good general correspondence for nH (MAE = 0.3) and to a slight-

ly lesser extent for EC50 (MAE = 26.7 ng/mL) (Fig. S12D). This data suggests that our model is 

broadly predictive of complex configurations capable of quantitatively modulating aspects of the 

dose response curve with some limitations, particularly for the EC50, which is likely constrained 

by the dynamic range and EC50 of the ncTET induction system controlling synTF expression. 

 

Mapping circuit behavior space for two-input circuits 

  Cellular networks sense and integrate concurrent environmental signals in a variety of 

ways. Signals can be integrated linearly, by summing inputs, or non-linearly, by computing in-

puts in near-digital fashion. We tested our ability to use programmed cooperative complex as-

sembly to tune between these regimes for a two-input circuit, where regulation is mediated by 

two differentially inducible synTF species that assemble together into a clamped complex (Fig. 



2C). Dose response behavior for two-input circuits depends not only on the cooperativity asso-

ciated with binding of each individual synTF, but also on binding interdependence conferred by 

the clamp. We used our model to investigate the relationship between complex configuration 

and two-input regulatory function (Figs. 2C, S13A). The configuration space that was tested 

included 6 Kt affinities for each synTF, 5 Kp affinities, and nc ranging from 2-6 (1-3 for each of 

the two synTFs), for a total of 8,424 configurations (Fig. S13A). For all circuits that were simu-

lated, synTF1 was expressed from a ncTET promoter, and synTF2 from a ncZEV promoter. For 

each configuration, two-input dose response surfaces were simulated by titrating ATc from 10-1-

104 ng/mL, and EST from 0.05-12.5 nM to generate surfaces containing 96 x 96 data points 

(MATLAB function MeanTxn_TwoTF.m in Table S4). To identify configurations that exhibit de-

sired target behaviors, we used Kullback-Leibler divergence (DKL), an information theory quanti-

ty that measures informational entropy, to assess similarity between simulated and target dose-

response surfaces (Fig. S13B). DKL is given by the following equation: 

 

𝐷!"(𝑃|| 𝑄) = 𝑃 𝑖 ln !(!)
!(!)!  , 

 

which provides a measure of “information lost” when distribution Q is used to approximate dis-

tribution P (and thus equals 0 when P and Q are the same) (Fig. S13B). DKL was calculated be-

tween surface data for simulated surfaces (Q) and target distributions (P) designed to mimic 

ideal Boolean logic gate behavior (Figs. S13C, S14A). Target distributions consisted of 12 x 12 

square regions located in the corners of each surface; regions were either uniformly fully tran-

scriptionally active or inactive based on their particular logic (Fig. S14A). 

 We generated a circuit behavior space (Fig. 2C) by plotting DKL for an idealized OR-gate 

behavior against that of an idealized AND-gate (Fig. S13C). In qualitative terms, the position of 

a configuration within this space represents the degree to which binding of the synTF species 



during complex formation is either independent (OR-like) or interdependent (AND-like). Configu-

rations that confer the most AND-like and OR-like circuit behavior cluster at two opposing verti-

ces (Figs. 2C, S14B), both of which are enriched for higher order (nc = 4 - 6) complexes. Thus, 

circuits that exhibit more Boolean-like behavior, with sharper decision boundaries, contain more 

highly-cooperative assemblies. Circuits conferring more non-cooperative, graded surfaces are 

found in the fronts between vertices, or near the center of the scatter, amongst complexes with 

lower nc. Configurations conferring sharp AND and OR-like logic are enriched for low Kt affinities 

and high Kp affinities (Fig. S14B), while those with graded responses show a broader range of 

parameter values, particularly for Kp.   

In addition to AND and OR logic, we probed the behavior space for other Boolean logic 

behaviors to assess the behavioral capabilities and limitations of the two-input system. We que-

ried NOR, NAND, and XOR gates, but were unable to find configurations capable of accessing 

these behaviors. It should be noted the types of logic behaviors that can be accessed by our 

system are likely limited by our exclusive use of activators to engineer transcriptional regulation. 

Therefore, only logic functions that feature monotonically increasing transcriptional activity with 

respect to inducer concentration are likely possible. Indeed, we see little evidence of any non-

monotonic behavior in our system, including negative cooperativity between binary and ternary 

complexes, which might be formally possible through competition between transcription factors 

for binding to free clamp. Here, the model suggests that clamp is expressed at sufficient quanti-

ties to prevent such a scenario.  

  In order to validate model predictions, we selected various circuits within the behavior 

space distribution to construct and experimentally test (Fig. S15A). We did a simple “4-corners” 

test, where we added saturating amounts of ATc (2000 ng/mL) and EST (15 nM) inducer either 

individually, or as a pair (Fig. S15B). To quantify the predictive power of the model, we com-

pared model and experimental data in correlation plots of the divergence (DKL) with ideal AND 

and ideal OR logic (Fig. S15C). For the majority of the tested configurations, model and data 



show close agreement; however, behaviors predicted to be AND-like for several of the circuits 

was not observed, suggesting that AND-like assemblies may be extremely sensitive to assem-

bly parameters. When we further analyzed the performance of configurations predicted to give 

the best AND-gate logic, we found that these tended to show a greater overall deviation from 

model predictions than all other configurations (Fig. S15C). We collected data on full surfaces 

(ATc = 500, 298.5, 178.2, 106.4, 63.5, 37.9, 22.6, 13.5, 8.1, 4.8, 2.9, 1.7 ng/mL; EST = 12.5, 

7.58, 4.59, 2.78, 1.69, 1.02, 0.62, 0.38, 0.23, 0.14, 0.08, 0.05 nM) for a number of these circuits 

to compare with model predictions, selecting AND- and OR-gate configurations predicted to 

yield Boolean-like dose response surfaces, as well as configurations predicted to exhibit inter-

mediate behavior (Fig. 2C). Using an MAE assessment, we found good overall agreement with 

between the model and measured DKL values (Fig. S15C). Interestingly, AND-logic was less 

well-predicted by the model than other behaviors. This may be due to assemblies underlying 

AND-logic being extremely sensitive to both component affinity and intracellular concentration. 

In the case of the AND-gate, this manifests as difficulty with balancing higher order binding en-

ergies for each of the ternary states within the complex. 

 

Dynamic model for circuits composed of interacting synTF assemblies 

  In order to examine the extent to which programmable complex assembly could be used 

to program synthetic gene circuit dynamics, we developed a microfluidic workflow to measure 

single cell response to circuit induction (Fig. S16A). We established accumulation and decay of 

GFP fluorescence in response to a single, saturating square pulse of doxycycline (Dox) as a 

generic assay for dynamic behavior (Figs. 3, S16). Prior to testing cooperative assemblies, we 

assessed experimental precision for the 12S2T microfluidic device (Fig. S16B, see Materials 

and Methods) using square pulse induction of the ncTET-GFP reporter strain (Fig. S4). Popu-

lation-to-population variation in mean fluorescence measured across different chambers (cham-

ber-to-chamber) and different devices (device-to-device) was found to be minor (Fig. S16D). 



Dox was used in place of ATc for time-lapse fluorescence imaging because of its increased 

photostability relative to ATc. In Fig. S16E we verified that Dox concentration (10 µg/mL) we 

used for microfluidic experiments was administered at saturating levels. 

  In order to predict the dynamic behavior of circuits measured in microfluidic pulse exper-

iments, we developed a model that incorporates our thermodynamic treatment of cooperative 

assembly while using a system of first-order differential equations to account for synTF tran-

scriptional dynamics (Fig. S17A). Each equation describes species production from a single 

circuit “node” (e.g. regulated promoter driving expression of synTF or GFP), and consists of: (i) 

a basal promoter activity (kbasal), (ii) regulated promoter activity (kact), and (iii) degradation of the 

protein species (kdeg). For (DBM)miniCyc1-derived promoters regulated by synTF assemblies 

(Fig. S1), transcriptional regulation is described using thermodynamic polynomials described in 

Figs. S7 and S8, which are multiplied by activation rate constants, kact, to obtain locus-specific 

rates of species production (Fig. S17A).  

  Activation/deactivation dynamics were measured for a set of five test circuits to obtain 

training data for parametric model fitting (Fig. S17B): (1) The ncTET-GFP expression system 

(one-node), (2) a two-node network where ncTET drives expression of synTF1 (Kt = 13.6 nM), 

which activates GFP reporter driven by an nc=2 promoter, (3) a two-node network where 

synTF1 drives cooperative assembly (Kt=224 nM, Kp = 1.97, nc=4) at the reporter, and (4) a 

three-node cascade in which synTF1 activates production of synTF2 (Kt = 15 nM), which sub-

sequently activates GFP with and (5) without clamp (code description in Table S4). We extract-

ed model rate parameters (kbasal, kact, and kdeg) by performing a pattern search least squares 

global fit on data traces shown in Fig. S17B. During the fit, complex-mediated transcription was 

calculated using fixed values obtained from previous thermodynamic model fitting (Kt, Kp, cn, 

and pADH1-driven [C]tot) (Figs. S9-10). Initial guesses for dilution/degradation rate (kdeg) of pro-

tein species were approximated to be 0.003 min-1 (based on the doubling time of yeast cells in 

YPGal). Fitting multiple circuits allowed us to extract locus-specific promoter activation rates for 



both synTF and GFP transcription (kact). As shown in Fig. S17B, our fit solution revealed close 

correspondence between model and data across the entire fitting set. 

  Finally, we developed a general relationship that could be used to scale the extracted 

promoter activation rates (kact) for promoters having different synTF operator numbers (nc) by 

constructing two-node cascades with promoter (pSynTF1) variants having nc = 2-5. We meas-

ured the induced maximum circuit output for these variants, and fit this data with a simple lo-

gistic function to produce a relationship between nc and the promoter activation rate (Fig. S17C, 

code description in Table S3).  

 

Mapping behavior space for circuit activation/deactivation dynamics 

  In order to assess the extent to which cooperative complex assembly can be used to 

predictively tune temporal circuit behavior, we used our integrated model to map activa-

tion/deactivation behavior space for circuits comprising three different network motifs: a two-

node cascade, three-node cascade, and three-node cascade with positive feedback loop at the 

second node (Figs. 3, S18, Table S4). Activation/deactivation dynamics were calculated in re-

sponse to a 16 h Dox pulse for the full set of assembly configurations available to each motif 

(total of 64,080). We filtered out circuit configurations with low maximum outputs (max GFP < 

1000 AFU) or weak inducibility (max/basal < 1.5), resulting in a “filtered space” of 12,774 circuit 

configurations (Fig. S18B). Values for activation (τa) and decay (τd) half-time were respectively 

defined as the time it takes to reach the half-maximal response following Dox pulse initiation, 

and time to return to half-maximal response following the end of the pulse (Fig. 3A). Circuits 

that did not decay to less than their half-maximal response within the time frame of the simula-

tion (4000 min) were designated as “no decay”. Plotting (τa) against (τd) for all circuits yielded 

the behavior space scatter in Fig. 3B. Circuits designated as no decay were plotted separately 



in a box above the (τd) axis. Grey shaded region denotes circuit decay times that exceed the 

duration of time-lapse imaging in microfluidic devices. 

  In Fig. S19A, we demonstrate that behavior space distribution expansion for two- and 

three-node circuits in Fig. 3B is the result of cooperative complex assembly. Comparing no-

feedback configurations with clamp to those without, we see a dramatic expansion along both 

(τa) and (τd) axes. In Fig. S19B, various peripheral regions of Fig. 3B behavior space are high-

lighted, along with parameter distributions for circuit configurations that fall within each region. 

Highlighted categories include ‘fast ON / slow OFF’, ‘slow ON / fast OFF’, ‘slow ON / slow OFF’, 

‘fast ON / fast OFF’, and ‘Memory’. Parameter profiles for a number of these regions show en-

richment in higher-order configurations (nc > 3), once again highlighting the importance of com-

plex assembly in granting access to non-linear behaviors (Fig. S19B). Comparing opposing ver-

tices of the behavior space, we see that configurations conferring fast ON / slow OFF behavior 

are enriched for high synTF2 affinities (small Kt2 values) at the reporter C-node, while those at 

the opposing vertex demonstrate a shift to lower affinity values. This was observed for circuits 

with or without feedback. This affinity difference in the C-node configuration is consistent with a 

shift from slower to faster deactivation times (e.g., see Fig. 3B). Moreover, configurational dif-

ferences at the B-node are likely important in determining circuit activation time-scales. For ex-

ample, in the no feedback case, B-node configurations exhibiting fast ON / slow OFF dynamics 

utilize high affinity clamp interactions (small Kp1), in contrast to those in slow ON / fast OFF, 

which would enable lower activation thresholds and thus faster responses.  

  Though complex assembly enables expansion of the behavior space for two- and three-

node cascades (Fig. S19A), there is still a strong (inverse) dependency between (τa) and (τd), 

with scatter points lying along the axis connecting the fast ON / slow OFF and slow ON / fast 

OFF vertices. Our analysis reveals that accessing behavior spaces that break this dependency 

requires feedback; the only configurations emerging that exhibit slow ON / slow OFF were cir-



cuits with feedback (Fig. S19B). Similarly, feedback was a required feature of circuit configura-

tions that show either very slow decay rates (high τd) or memory. The lower left corner of the 

behavior space is not accessible due to a combination of synTF affinities and the inherent limita-

tions imposed by transcription/protein synthesis and decay. Not surprisingly, areas of faster (τa) 

and (τd) behavior space can be accessed by two-node circuits (fig. S19A), but the behavior dis-

tribution shows the same shape – a curved front with a ‘knee’ - as that of three-node. This 

shape likely arises from assembly thermodynamics: fast on times that result from low energy 

complexes assembling at lower synTF concentrations necessarily take longer to disassemble 

when input is removed and intracellular synTF begins to decay.  

  A number of interesting features emerge from analysis of feedback-containing three-

node circuits. While both type 1 (homo-assembly; both TFs clamped) and type 2 (hetero-

assembly; only one TF clamped) B-node architectures were observed for circuits with slow ON / 

memory space behavior, only type 2 configurations featuring both synTFs complexed together 

at the B-node could attain slow ON / slow OFF dynamics (Fig. S19B). In this latter case, weak 

synTF1 interactions form the basis for the slow ON phase, while stable complex formation re-

sulting from accumulation of higher affinity synTF2 (small Kt2 values) enforces positive feedback, 

resulting in prolonged decay times and a slow OFF.  

  To test the ability of our kinetic model to predict experimental circuit behavior, we con-

structed a number of circuits representative of different regions of behavior space, and analyzed 

their behavior using microfluidics (Fig. S20A). Circuits were subjected to a 16 h pulse of Dox 

(10 µg/mL) on the device after which the inducer was removed and GFP measurements were 

collected for another 26 h (Fig. S20B). See movie S1 and S2 for time-lapse videos. From these 

data, we extracted τa and τd for each circuit, as we did with model-predicted traces, and com-

pared them to model-predicted τa and τd (Fig. S20C). We found correspondence between mod-

el and experiment for ON dynamics (MAE=150.6 min) and, to a slightly lesser extent, OFF dy-



namics (MAE=273 min), suggesting that the model can predict aspects of circuit response dy-

namics. For a few circuits, GFP profiles showed prolonged decay times, preventing us from ob-

taining a τd within our experimental measurement window (e.g. strain #9 in Fig. S20B). As a se-

cond method for evaluating model performance, we directly compared model and data for all 

circuits at specified time points throughout the experiment (Fig. S20D). For most circuits, the 

model and data correspond well through 22 h of measurement (6h post DOX removal), after 

which predictive power is diminished for a fraction of circuits. Interestingly, the model tended to 

under predict decay dynamics for a number of three-node + FB configurations. More specifical-

ly, configurations that were predicted to decay slowly instead showed no measurable decay 

within our measurement window (e.g. strains #15, 19, 20 in Fig. S20). For these configurations, 

the dynamic model may have underestimated feedback strength conferred by B-node assembly. 

Consistent with the idea that fine adjustments in assembly thermodynamics can readily tune 

feedback circuits between mono- and bistable steady-state regimes (52), it is possible that mi-

nute inaccuracies in our complex assembly model may render the behavior of feedback-

containing circuits more difficult to predict. 

  Because GFP is a stable protein and highly resistant to proteasomal degradation in 

yeast, its clearance closely tracks the rate of cell division. Therefore, maintenance of cellular 

growth in the microfluidic device can be another potential factor that could affect the predictive 

power of the model. To investigate this further, we quantified cell size for all measurements and 

found that mean cell size and variation across the population stay relatively constant throughout 

our experiments (see Fig. S24A). Furthermore, analysis of cell number showed that the mean 

growth rate across our strains (0.0029 min-1) is very close to the dilution rate of GFP in our 

model (0.003 min-1), providing a cross-validation for our kinetic model fit. These observations 

are also consistent with prior work showing that synTFs (constructed using affinity mutants ZFs 

42-10 and 43-8) confer little to no fitness defects in yeast (20) (see Fig. S24B). Lastly, we com-

pared mean growth rates with the measured activation and decay times of each circuit and 



found no significant correlation (see Fig. S24C), suggesting that variation in growth rate does 

not strongly impact or drive circuit dynamics. However, a detailed investigation would be needed 

to fully quantify this, and to exclude the possibility that growth rate changes influence the ob-

served differences in circuit dynamics. Limitations of the current study include our ability to ac-

curately measure cellular growth rate over long periods of time: growth rate data is obtained for 

~20 h, after which cells fill the chamber and exit the measurable field of view, and microscopic 

images are captured every 15 min, limiting the accuracy of growth rate determination. 

 

Engineering circuits that interpret and decode dynamic environmental information 

  In nature, cells are exposed to dynamically-changing environments. Regulatory circuits 

must interpret fluctuating signals in the environment and precisely translate them into the ap-

propriate cellular response (26, 53). Because this type of behavior is, by nature, highly non-

linear, we predicted that creating synthetic circuits that respond to temporal features of the envi-

ronment, or execute time-based signal processing, could be enabled by our ability to program 

complex assembly. Implementing time-based control could be used to design and tune filtering 

functions, e.g. that allow cells to distinguish transient environmental fluctuations from prolonged 

signals, or become activated under particular temporal input regimes.   

 

Persistence detection: circuits that can discriminate input pulse length 

  As a first step toward engineering dynamically-gated behavior, we attempted to design 

circuits that can discriminate between input pulses of different duration. We mapped persistence 

detection behavior for a configuration space including two- and three-node cascades, and co-

herent feedforward loops (CFFL) (Fig. S21A) – a motif that is not only accessible within our de-

sign space, but one that has been postulated to confer persistence detection behavior in natural 

systems (27). 



  Using our model to simulate behavior, we subjected each circuit configuration to a set of 

40 input pulses, with durations ranging from 30 min to 12 h of Dox, and calculated maximum 

GFP output as a function of time for a 12 h time course. Circuit output for each input pulse was 

normalized to maximum circuit output (following a 9000 min Dox pulse) and then plotted as a 

function of pulse length to produce a characteristic “temporal dose response” (TDR) for each 

circuit (Fig. S21B). We filtered out circuit configurations with low maximum outputs (max GFP < 

1000 AFU) and weak inducibility (max/basal < 1.5). Using a linear fit at points closest to the half-

maximal response, we approximated two metrics from each TDR that define persistence filtering 

behavior: (1) input duration threshold (input duration at half-maximal response) and (2) filter 

sharpness (s, slope of TDR at half-maximal response). Just as Hill coefficient represents sensi-

tivity to concentration changes in a biochemical dose response, temporal filter sharpness serves 

as an index for the sensitivity of circuit output to changes in pulse length duration.  

  In Fig. S21C, temporal filter sharpness (s) was plotted versus input duration threshold 

for all circuits. Analysis of the resulting behavior space revealed three-node cascades provide 

the broadest range of persistence filtering behaviors, and comprise nearly all circuits that exhibit 

the sharpest filtering. Analysis of these filters revealed an enrichment in highly-cooperative as-

semblies (high nc, large Kt, small Kp values) (Fig. S21C). CFFL circuit configurations demon-

strated many instances of sharper filtering behavior compared with those in the two-node distri-

bution. However, despite previous description of this motif as an effective persistence filter (27), 

none of the CFFL configurations were as sharp as the top 4.5% of three-node cascades. Taken 

together, our analysis demonstrates strong correspondence between circuit node nonlinearity 

and filter sharpness, suggesting that complex assembly can be effectively used to tune temporal 

dose response. 

  In order to validate model predictions, a circuit predicted to be a sharp filter was con-

structed: a three-node cascade with high nc complexes. This ‘nonlinear’ circuit was compared to 

the simple ‘linear’ circuit from Fig. 3A, which is a non-cooperative two-node cascade that falls 



into the region of behavior space with diminished sharpness (Fig. S21C). We used microfluidics 

to measure each circuit’s maximum output in response to six pulse lengths (durations ranging 

from 30 min to 16 h) and observed close agreement between measured and model-predicted 

behaviors (Fig. 4A). 

 

Mapping frequency response behaviors 

  Dynamic information can be encoded in other aspects of a signal besides the duration of 

a single pulse. The archetypal example in biology is neural coding, in which a stimulus is coded 

in the temporal pattern of a neural spike train (54). Dynamic information coding and decoding 

appears to be pervasive in cellular regulatory systems as well. For example, a variety of regula-

tory molecules (e.g. p53, Msn2, etc.) have been shown to display pulsing behavior in cells, and 

these dynamic patterns of activity can encode information about the nature of an upstream 

stimulus in temporal features, such as the pulsing frequency (25, 26). Moreover, experiments 

subjecting cells to time-varying (oscillatory) stresses have shown that cellular networks may 

have the ability to decode frequency information from environmental signals (28).  

  At the cellular level, systems analysis has identified specific network motifs for their abil-

ity to generate characteristic and useful responses to time-dependent inputs (27). To see 

whether our available circuit design space could support temporal signal processing, we ex-

tended our computational methods to assess frequency response behavior. We examined five 

circuit motifs accessible to our part space: two-node cascade, three-node cascade, cascade + 

FB, CFFL, and CFFL + FB (total collection of 169,552 configurations) (Fig. S22).  

  Frequency response for each circuit was obtained by simulating circuit output in re-

sponse to a series of 20 periodic (square wave) Dox inputs, with periods ranging from 90 min 

(high frequency) to 9000 min (low frequency). All input regimes have the same 33% duty cycle 

and thus experience an identical duration of total input. A frequency response curve was gener-

ated for each circuit by plotting maximum GFP output (normalized to maximum output for consti-



tutive Dox) for each input frequency (Fig. S22B). Examining the resulting response curve data-

base, we identified two patterns of circuit behavior that demonstrate dramatically different output 

minima and maxima: one which filters high frequency input, only responding to low frequency 

regimes, and another which responds poorly to low frequency regimes, but is activated at high 

frequency. These circuit types effectively function as low-pass and band-stop filters, respective-

ly, and are discretely activated at different points along the frequency input axis. 

  Within the response curve database, we systematically identified circuits of each filter 

type based on the following criteria: low-pass filters were defined by a ratio of low to high fre-

quency amplitude > 5, while band-stop filters were defined as having ratio of high frequency to 

minimum amplitude > 2 (Fig. S22B). This screen yielded 4,726 low-pass and 327 band-stop 

candidates. In configurations supporting both behavior types, we observe cooperative, high nc 

complexes, further validating our prediction that filtering behavior is enabled by cooperative as-

sembly. Circuits with low-pass behavior were comprised primarily of three-node cascades and 

CFFLs, with B-node enrichment of highly-cooperative assemblies (large nc, large Kt, small Kp 

values) (Fig. S22C). Within CFFLs, we find an enrichment in configurations that exhibit AND-

like logic at the C-node (both synTFs in complex), consistent with previous work implicating this 

type of regulatory logic for sharp filtering (27). Band-stop circuit configurations all contained B-

node feedback, suggesting that retaining memory of prior events plays a role in this type of fil-

tering. Indeed, we see enrichment of B-node configurations similar to those conferring slow ON / 

slow OFF dynamics for single pulses (Fig. S21). The dynamics of these circuits (weak activation 

triggers and strongly reinforced type-1 B-node assembly and slow decay) would appear to un-

derpin their ability to filter out mid-range frequencies, while responding to high frequency envi-

ronments by integrating successive short pulses over time. 

 

Temporal decoding: engineering circuits that can distinguish between different input fre-

quencies 



  Since the frequency response profiles for low-pass and band-stop filters have non-

overlapping regimes of frequency space, we surmised that, if tuned properly, these two filter 

classes could be used to create a ‘mixed’ cellular population able to readily distinguish between 

unique frequency environments (temporal decoding). To experimentally demonstrate this, we 

selected from our analysis top hit low-pass and band-stop configurations for construction (Figs. 

S22B, S23). We placed mKate2 under expression control of the low-pass (CFFL) circuit and 

GFP under control of the band-stop (CFFL+FB) circuit (Fig. 4B). We then mixed equal concen-

trations of the two engineered yeast strains, co-cultured them in the 2S6T microfluidic device, 

and analyzed their behavior when exposed to varying Dox input frequencies (with periods rang-

ing between 3 h to 60 h, all with 33% duty cycle). The resulting frequency response curves for 

each circuit show agreement with model predictions and, critically, reveal distinct regimes of 

frequency space (‘low’ and ‘high’) in which the circuits have opposite outputs (Fig. S23). Repre-

sentative fluorescence images of the co-cultures exposed to these two regimes confirm the dis-

criminatory ability of the population based on mKate2 and GFP reporter output (Fig. 4B).  

 

Conclusions 

 In summary, our work demonstrates that manipulating the molecular interactions within a 

synthetic promoter complex facilitates tuning between linear and non-linear computational func-

tions, unlocking steady state and temporal circuit behaviors inaccessible to non-assembly 

schemes. This work suggests that the widespread deployment of cooperative complexes in na-

tive systems may have been a natural design strategy that allowed networks to evolutionarily 

modulate between linear and nonlinear signal processing regimes without the need to evolve 

new wiring or additional regulatory components, thereby allowing a relatively low diversity of 

molecular components to execute the exponentially larger number of computations required for 

metazoan regulation. Use of engineering approaches that incorporate cooperative assembly as 

a design feature could therefore facilitate creation of densely interconnected signal processing 



circuitry with a level of density and computational sophistication approaching that of natural 

networks, enabling precision control in applications where non-linear temporal and spatial signal 

processing are critical, such as circuit-directed cell differentiation or dynamic regulation of ho-

meostasis in engineered tissues. 

 

  



synTF

clamp

DYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPGG
LEAPPTDVSLGDELHLDGEDVAMAHADALDDFDLDMLGDG
DSPGPGFTPHDSAPYGALDMADFEFEQMFTDALGIDEYGGG
SRP GEAPFQCRICMANFSRQDRLDRHTRTHTGEKPFQCRICM
ANFSQKEHLAGHLRTHTGEKPFQCRICMANFSRRDNLNRHLK
THLRGSGSGVKESLV 

GEAPFQCRICMANFSTGQILDRHTRTHTGEKPFQCRICMANF
SVAHSLKRHLRTHTGEKPFQCRICMANFSDPSNLRRHLKTHLR

43-8
low a�nity

42-10
low a�nity

VP16

3xFLAG
NLS

ligand
GERPFQCRICMANFSRQDRLDRHTRTHTGEKPFQCRICMANF
SQKEHLAGHLRTHTGEKPFQCRICMANFSRRDNLNRHLKTHLR

43-8
high a�nity

PKKKRKVVE LQRRRVTVRKADAGGLGISIKGGRENKMPILISKIF
KGLAADQTEALFVGDAILSVNGEDLSSATHDEAVQALKKTGKE
VVLEVKYMKEVSPYFK [RSGSGSGSGSGSGSGSGSGSGSPGL
QRRRVTVRKADAGGLGISIKGGRENKMPILISKIFKGLAADQTE
ALFVGDAILSVNGEDLSSATHDEAVQALKKTGKEVVLEVKYM
KEVSPYFK]

NLS
syn PDZ1

PDZ2

GERPFQCRICMANFSTGQILDRHTRTHTGEKPFQCRICMANF
SVAHSLKRHLRTHTGEKPFQCRICMANFSDPSNLRRHLKTHLR

42-10
high a�nity

TA

GSHMGHELAKQEIRVRVEKDPELGFSISGGRGGRGNPFRPDDD
GIFVTRVQPEGPASKLLQPGDKIIQANGYSFINIEHGQAVSLLKTerbin

GS linker

[  ] - repeated unit

|

|

|

|

|

| 

| |

YEAST 
PROMOTERS

yeast boundaries E. coli boundaries| |

synTF

clamp

ncTET
(see S4)

ncZEV
(see S4)

(DBM)miniCyc1 GFP

ORFS

GAATTC [aGAGTGAGGAc TCG] aGAGTGAGGAc GGATCC C
AGATCCGCCAGGCGTGTATATATAGCGTGGATGGCCAGGCA
ACTTTAGTGCTGACACATACAGGCATATATATATGTGTGCGAC
GACACATGATCATATGGCATGCATGTGCTCTGTATGTATATAA
AACTCTTGTTTTCTTCTTTTCTCTAAATATTCTTTCCTTATACAT
TAGGACCTTTGCAGCATAAATTACTATACTTCTATAGACACACA
AACACAAATACACACACTAA TCTAGA TATTAAA ATG 

pADH1constitutive

small 
molecule
inducible

synTF
 regulated [  ] - repeated unit

(DBM)miniCyc1

ncTET and ncZEV

pADH1

see figure S4

[ yeast pADH1 -1500 to 0 ] TCTAGA ATG |

(DBM)mini
Cyc1

synTF
binding

(DBM)

|

A

B

protein sequences

yeast expression constructs

Figure S1. Sequence details of synthetic promoter and protein components. Plasmid constructs listed in Table S1 
are composed entirely of molecular components described in this figure. (a) Amino acid sequences common to all 
synthetic transcription factors (synTFs) and clamps used in this study. synTFs feature a FLAG epitope tag, nuclear 
localization sequence (derived from SV40 NLS), and VP16 transcriptional activation sequence upstream of a triple
repeat zinc finger array. For zinc finger a�nity alleles, mutated residues are highlighted in bold. Clamps contain 
the same N-terminal nuclear localization sequence as synTFs. An nc=2 clamp sequence is depicted, and the unit
repeated in higher order clamps is highlighted. Flexible GS repeat linker sequences for both synTF (5AAs) and 
clamp (20 AAs) are depicted at lengths found to be optimal for complex assembly (see Figure S6B). Yeast or E. 
coli optimized coding sequences were cloned into expression plasmids (see Table S1) at the indicated boundaries. 
For yeast, N-terminal boundaries directly abut promoter-associated start codons, while E. coli boundaries indicate
fusion with expression vector MBP (see Materials and Methods). (b) Promoter/coding sequence pairs used in circuit 
construction. All combinations of promoter and coding sequence used in Table S1 yeast expression constructs are 
indicated (left). DNA sequences for pADH1 and (DBM)miniCyc1 promoters, and associated start codons are indicated 
(right). (DBM)miniCyc1 with 43-8 DNA binding motif (DBM) sites for an nc=2 configuration is depicted. The highlighted 
unit gets repeated in the 5’ direction to create higher order assemblies. Kozak sequence is underlined and 
translational start (ATG) is colored purple.



MBP

A B

C

10
–3

10
–2

10
–1

10
00.0

0.5

1.0

[MBP-ZF] (µM)fra
ct

io
n 

pr
ob

e 
bo

un
d

high Kd =
45.5 nM

low Kd =
70.5 nM

high <--> DBM 1

0.0

0.5

1.0

Kd = 
6.5 nM

43-8 interactions (ZF1)

fluorescent probe binding

high <--> DBM 2  

Kd = 
30 nM

high <--> DBM 3

Kd = 
42 nM

low <--> DBM 1

10 10 10 10 10
0.0

0.5

1.0

Kd = 
13.6 nM

low <--> DBM 2

10 10 10 10 10

Kd = 
143 nM

low <--> DBM 3

10 10 10 10 10

Kd = 
224 nM

42-10 interactions (ZF2)

10
–2

10
–1

10
0

10
1

high Kd =
147 nM

low Kd =
273 nM

[MBP-ZF] (µM)

ZF1 (43-8) probe ZF2 (42-10) probe

competition binding experiments

fra
ct

io
n 

pr
ob

e 
bo

un
d

[competitor] (µM)

0.2

0.4

10 10 10 10 10
0.0

0.2

0.4

10 10 10 10 10 10 10 10 10 1010 10 10 10 10
–3 –2 –1 0 1 –3 –2 –1 0 1 –3 –2 –1 0 1–3 –2 –1 0 1

fra
ct

io
n 

pr
ob

e 
bo

un
d

[competitor] (µM)

Kd = 
0.94 nM

Kd = 
5.2 nM

Kd = 
32 nM

Kd = 
95 nM

Kd = 
415 nM

Kd = 
218 nM

Kd = 
67 nM

Kd = 
15 nM

Kd = 
2.4 nM

low <--> DBM 4 low <--> DBM6

low <--> DBM7

low <--> DBM5low <--> DBM3

low <--> DBM 1

low <--> DBM 2

high <--> DBM 1

high <--> DBM 2

MBP-ZF

DBM
oligo

FA binding assay to
measure Kt a�nities

competitor probe

MBP

fluor.
probe

–3 –2 –1 0 –3 –2 –1 0 1 –3 –2 –1 0 11

0.0

10 10 10 10 10
–3 –2 –1 0 1
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proteins were purified and DBM oligos prepared as described in Materials and Methods. (a) MBP-ZF fusion proteins 
(see Figure S1 for sequence details) bind to oligonucleotide probes harboring a single DBM repeat. A�nities for the 
interaction were measured as a function of the increase in fluorescence anisotropy resulting from binding of the 
fusion to a fluorescently labeled (FITC) oligo probe (see Materials and Methods). (b) Measuring oligo probe binding 
to ZF a�nity variants. MBP-ZF was titrated against 10 nM oligo probe. Change in anisotropy was converted to the 
fraction of bound probe and binding curves were obtained for high and low a�nity variants for both 43-8 (TF1) and 
42-10 (TF2) species. Kd values were extracted by fitting data to a quadratic binding equation (see Materials and 
Methods). (c) Using competition binding experiments to measure binding constants for DBM a�nity variants. At
concentrations of MBP-ZF and probe at which half-maximal binding was observed in Figure S2B experiments, we
titrated unlabeled oligo competitors containing DBM a�nity variants and measured anisotropy increases 
accompanying displacement of the probe by the competitor. Competitor oligo Kd values were extracted by fitting 
data (converted to fraction probe bound) to a cubic equation describing competitive binding (see Materials and 
Methods). Sequences for both sets of DBM a�nity variants are listed on the right. Residues mutated from the WT
sequence are indicated by bold type.

DBM1 -- aGAGTGAGGAc

DBM2 -- aCAGTGAGGAc

DBM3 -- aTAGTGAGGAc

DBM1 -- aGACGCTGCTc

DBM2 -- tGACGCTGCTt

DBM3 -- aGACGGTGCTc

DBM4 -- aCACGCTGCTc

DBM5 -- aGACGCTACTc

DBM6 -- aGACGCTGCTa

DBM7 -- aGACTCTGCTc

DBM sequences

43-8

42-10



MBP-ZF

MBP

A

D

C

B

10
–2

10
–1

10
0

10
1

0.0

0.5

1.0

Kd =
455 nM

[MBP-PDZ] (µM)

fra
ct

io
n 

pr
ob

e 
bo

un
d

FA binding assay to
measure Kp a�nities

fluorescent probe binding

competition binding experiments

10–2 10
–1

100 101
0.0

0.5

1.0

[MBP-TF] (µM)

fra
ct

io
n 

pr
ob

e 
bo

un
d

Kd = 
1.97 µM

VKESLV <--> syn

MBP

MBP-PDZ

PDZ ligand fluor. 
probe

fluor. 
probe

MBP

Figure S3. In vitro measurement of PDZ-ligand binding constants by fluorescence anisotropy. Recombinant proteins 
were purified as described in Materials and Methods (a) MBP-PDZ fusion proteins (see Figure S1 for sequence details) 
bind to peptide ligand probe. A�nities for the interaction were measured as a function of the increase in fluorescence 
anisotropy resulting from binding of the fusion to a fluorescently-labeled (FITC) oligopeptide probe (see Materials 
and Methods). (b) Measurement of peptide probe binding to PDZ domain. MBP-PDZ was titrated against 10 nM peptide 
ligand probe, and anisotropy data were converted to fraction of bound probe. Binding curves were obtained for high 
and low a�nity variants for the syntrophin PDZ domain. Kd values were extracted by fitting data to a 
quadratic binding equation (see Materials and Methods). (c) Competition binding experiments were conducted to 
measure binding constants for ligand a�nity variants. At concentrations of MBP-PDZ and probe at which half-maximal 
binding was observed in Figure S3B experiments, we titrated 43-8 synTFs with appended ligands of various a�nities. 
Anisotropy increases accompanying displacement of the probe by the competitor was measured, and competitor 
ligand Kd values were extracted by fitting data (converted to fraction probe bound) to a cubic equation describing 
competitive binding (see Materials and Methods). (d) Table of competitior ligand Kd values collected for both
syntrophin and erbin PDZ domains.

VKESLV <--> syn

competitor
ligands

syn 
Kd (µM) 

IRETIV

IRETIL

VKESLV

VKEALV

WLKTWV

  PVDSWV

syntrophin-
specific

erbin-
specific

erb 
Kd (µM) 

nb

IRETII

nb

nb

WLVTWV

nb

nb

HLETFF

IRWTIV

nb

43.2

27.3

1.97

0.88

0.49

0.18

0.062

5.71

3.46

1.73

S1

S2

S3

S4

S5

S6

S7

E1

E2

E3 1.57 0.42

0.33

0.10

nbVKEAAA nbno
binding



FLAG-TF

[ATc] (ng/mL)

m
ea

n 
flu

or
 c

el
l-1  (

AF
U

)

nucleus

cytoplasm

ZEV (ZF-ER-VP16)
estradiol

linearized pGAL1-TET
(ATc-activated)

estradiol-activated ZF import

pGAL1-012pGAL1-012

TetR

ATc

TetR

GFP
(97-4)4miniCyc1

pTEF1
(constitutive)

ZEV

anti-FLAG
anti-Hex

10
-1

10
0

10
1

10
2

10
3

0.0

0.2

0.4

0.6

0.8

1.0
EC50 = 107 ng/mL
 nH   = 1.14

no
rm

al
iz

ed
 in

te
ns

ityWESTERN BLOT

component expression

EC50 = 60.7 ng/mL
 nH   = 1.53

10–2 10–1 100 101
0

2000

EC50 = 0.85 nM
 nH   = 1.34

4000

6000

8000

10000

EC50 = 0.57 nM
 nH   = 1.41

10–2 10–1 100 101100 101 102 103

GFP
pGAL1-012pGAL1-012

TetR

ATc

TetR

[estradiol] (nM)

[ATc] (ng/mL)

A

B

MPGERPFQCRICMRNFSRQSNLSRHTRTHTGEKPFQCRICMRN
FSRNEHLVLHLRTHTGEKPFQCRICMRNFSQKTGLRVHLKTHLR
GTPAAASTLEDPSAGDMRAANLWPSPLMIKRSKKNSLALSLTAD
QMVSALLDAEPPILYSEYDPTRPFSEASMMGLLTNLADRELVHM
INWAKRVPGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPV
KLLFAPNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGE
EFVCLKSIILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM
AKAGLTLQQQHQRLAQLLLILSHIRHMSNKGMEHLYSMKCKNV
VPLYDLLLEMLDAHRLHAPTSRGGASVEETDQSHLATAGSTSS
ELHLDGEDVAMAHADALDDFDLDMLGDGDSPGPGFTPHDSA
PYGALDMADFEFEQMFTDALGIDEYGG

C D

VP16

EST
receptor

97-4

97-4 ZEV ORF

rep.

1

2

3

CONSTITUTIVE
pADH1

LEU2HIS3

Figure S4. Characterization of inducible and constitutive expression systems. Experiments were conducted to obtain 
model input parameters for circuit component expression systems. (a) Using GFP as a surrogate to quantitate promoter
expression. For inducible expression systems, dose response curves were generated to characterize transfer functions 
between inducer concentration and transcriptional output. For the ncTET system, ATc was titrated, while EST was titrated 
for the ncZEV system. Measurements were made for induced cultures at mid-log growth by flow cytometry. Error bars 
represent standard deviation for three replicates. Curves were fit according to a Hill model (see Supplementary Text). Blue 
dotted lines indicate minimum and maximum expression levels as determined by fit. Constitutive expression from pADH1 
(see Figure S1) was measured for both LEU2 and HIS3 loci. Parameterization experiments for (DBM)miniCYC1 promoters 
are described in Figure S17. (b) Validation of GFP expression system by western blotting. In three separate blots, top 
panels were probed with anti-FLAG antibody (purple) and bottom panels with anti-Hex loading controls (orange) (left). 
Band intensity was measured using ImageJ, and mean normalized intensity data (error bars = std. dev.) were plotted 
and fitted with a Hill equation. (c) Amino acid sequence of the ZEV transcription factor involved in the ncZEV 
activation system. A 97-4 zinc finger was appended with the estrogen receptor harboring a C-terminal VP16 activation 
domain. Expression of the resulting coding sequence was driven by the pTEF1 promoter (-417 to 0). (d) ncZEV does not
a�ect transcription of the reporter in the absence of its target synTF1. Strains were constructed with di�erent 
combinations of: reporter ((p(43-8)4miniCyc1-GFP), ZEV expression cassette, ZEV-inducible clamp, and ZEV-inducible 
synTF1. All four strains were grown with and without 25 nM EST. Mean GFP fluorescence values were measured by 
flow cytometry. Error bars represent standard deviation.

ncTET ncZEV

LEU2 locusHIS3 locus

0

1000

2000

3000

4000

5000

6000

7000 (-) EST
(+) EST

m
ea

n 
flu

or
 c

el
l-1  (

AF
U

)

p(43-8)4miniCyc1-GFP

p(97-4)4miniCyc1-Clamp
p(97-4)4miniCyc1-SynTF1

pTEF1-ZEV
+ + + +
- + + +
- - -

-
+

- - +



FA signal control for in 
vitro complex assembly

[MBP-TF] (µM)

an
is

ot
ro

py

[PDZ] (µM)

shift due to 
MBP-TF 
binding shift due to 

PDZ
binding

10
–3

10
–2

10
–1

10
00.00

0.05

0.10

0.15

0.20

0.25

10
–1

10
0

10
1

+

MBP
+

MW (kDa) MW (kDa)

68.1

25.4

10.2

93.5
MBP

Figure S5. Component anisotropy signal contribution. A control experiment was run to verify minimal contribution 
of PDZ domain/clamp binding to overall change in anisotropy signal upon complex formation. Molecular weights 
for components and complexes are indicated to the left of each complex component (see Figure S1 for sequence
information). Binary complex was assembled by titrating MBP-TF against 10 nM fluorescent probe. Saturated binary 
complex was titrated with a syntrophin PDZ domain. Lines represent Hill fits for both titrations. Error bars are 
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Figure S6. Screening linker length combinations to optimize complex-mediated transcriptional output
(a) Workflow for processing flow cytometry data. In order to determine mean reporter fluorescence intensities, yeast 
cell populations are gated by forward (FSC) and side scatter (SSC) resulting in ~10,000 events (center). Geometric
mean fluorescence intensities are then determined for gated poulations (right). Data shown are representative 
fluorescence distributions for a yeast strain with ncZEV controlling a synTF and corresponding nc=4 reporter 
(-/+ 25 nM EST). (b) We screened flexible interdomain linkers of both synTF and clamp proteins to identify
combinations of linker lengths that yield high transcriptional synergy (see Figure S1 for component sequence
details). synTF expression is controlled by ATc-inducible ncTET and clamp is either constitutively expressed 
or absent (see also Figure S4); synTF/clamp complex assembles as an nc=2 complex, driving expression 
of a GFP reporter (top left). GS-repeat linkers interconnect ZF and ligand domains in the synTF, and PDZ 
domains in the clamp (bottom left). Three di�erent synTF linker lengths (Kt = 13.6 nM) were tested against
three lengths in the clamp, for three di�erent Kp values (right). Configurations yielding high transcriptional 
synergy produce high GFP output when synTF is induced and clamp is present (+/+), relative to when 
components are expressed individually. Grey box highlights the synTF/clamp linker pair exhibiting the 
highest transcriptional synergy from our screen ( (GS)x=glycine-serine linker of length x). 
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Figure S7. Thermodynamic model for nc = 2 complex assembly. The mathematical model describing assembly of an 
nc=2 promoter complex has three components: (1) Grey boxes: Chemical equilibria dictate concentrations of freely-
di�using species available for promoter binding. In our experimental system, synTF and clamp expression is 
controlled by ATc-inducible ncTET and EST-inducible ncZEV, respectively. Thus, Hill equations are used to describe 
the relationship between inducer and the in vivo concentrations of expressed components (left box, see also Figure 
S4). Mass-action equations are used to account for concentrations of all available species, including free 
monomeric components ([TF] and [C]) and non-promoter multimeric complexes (right box). (2) Blue boxes: 
Enumeration of possible promoter states. Each of the five states is assigned a corresponding thermodynamic 
weight (w) that describes the change in free energy for interactions within that state. (Kt = synTF-promoter binding 
a�nity; Kp = PDZ-ligand binding a�nity; nc = size of the complex) Each state is assigned a degeneracy that 
accounts for thermodynamically equivalent sub-states, and a transcription rate (r) proportional to the number of 
bound synTFs. (r0 = maximum transcriptional output of the promoter.) The weight for the ternary complex (synTF + 
clamp) features a cooperativity constant (c) that represents additional stability a�orded by the multivalent interaction 
(see also Figure S10). (3) Transcriptional activity (bottom): A function describing transcriptional output (txnn) is obtained 
by averaging the relative transcriptional contributions (w*r) of all promoter states.
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thermodynamic model parameter fitting

Kt values (ZF 43-8-DNA a�nities) - from fig. S2
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Figure S9. Summary of thermodynamic model parameters. (a) Comparison of experimentally-measured and
model-fitted parameter values. Interaction a�nities (ZF-DNA, PDZ-lig) were measured using in vitro binding
assays (see Materials and Methods, Figures S2-3). Expression parameters were obtained using dose response 
measurements of the ncTET and ncZEV expression systems (see Figure S4). Fitted parameters were obtained 
by performing a global fit on a set of experimental data of two-input circuits (see Figures 1D,E). The two-
input circuits consisted of ncTET and ncZEV driving expression of synTF and clamp (for di�erent nc, Kt, and Kp), 
with complex formation inducing expression of GFP. (b) Goodness of fit, evaluated by mean absolute error,
between model and data for di�erent choices of parameter fitting bounds on a�nity values (left). A 4-fold bound
was used in our model fits (highlighted in red). Model-fitted a�nity values for Kt (middle) and Kp (right) for di�erent
choices of parameter fitting bounds (4-fold bound is highlighted in grey).
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Figure S10. Transformation of experimentally measured values into in vivo parameter space. For parameter values 
associated with configurations used in the model fitting (Figure 1e), linear regression was used to model the 
relationship between experimentally measured values and corresponding fit-derived in vivo parameters (see Figure 
S9). Using fitted linear functions, interpolation was used to transform the remaining measured values (Figures S2-4). 
(a) Transformation of experimental expression data for pADH1 into in vivo pADH1-clamp expression. We fit a linear 
function (grey line) to thermodynamic model fit-derived values for ncZEV clamp expression ([C]tot, see Figure S7) at 
corresponding experimentally measured GFP expression levels (data from Figure S4A). From this, in vivo 
concentration for pADH1-expressed clamp was interpolated (green point) based on pADH1-GFP expression 
measured from the LEU2 locus (Figure S4A). (b) Transformation of measured a�nity values (Kt and Kp) into model 
parameter space. A log-log function (grey line) was used to model thermodynamic model fit-derived values for Kt
and Kp a�nity at corresponding experimentally measured a�nities (see Materials and Methods, Figures S2-3, S9). 
Measured a�nity values that were not associated with the thermodynamic model fit in Figure 1E were used to 
interpolate in vivo a�nities. (c) Extrapolation of model-fitted clamp cooperativity constants (dark orange points) to 
infer constants for complexes with nc > 4 (light orange). The extrapolation follows a log-linear relationship.
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model-predicted thermodynamics 
of synthetic complex assembly

Figure S11. Thermodynamics of complex assembly in the generation of nonlinear dose response. The 
thermodynamic model (Figures S7-9) was used to simulate three di�erent synTF/clamp configurations (nc, Kt 
and Kp) predicted to have input/output responses progressing from non-cooperative to nonlinear (left to right).
Free energy diagrams below each configuration depict relative free energies of the promoter states (grey are 
DNA-only states, blue are binary synTF-DNA states, and red are ternary synTF/clamp-DNA states). Below 
each free energy diagram is the simulated txnn (see Figure S8) dose response of the assembly’s transcriptional 
response when synTF species is titrated, and the corresponding EC50 ([TF] at half-maximal response) and nH 
(Hill coe�cient) for the dose response. Nonlinearity is increased by raising the complex valency (from nc = 
2 to 5), lowering synTF a�nity for DNA (Kt), and raising a�nity for clamp (Kp). These configuration changes
are accompanied by an increased free energy separation between binary (blue) and ternary (red) states. 

-100

-80

-60

-40

-20

0

raise nc
raise Kt  
lower Kp 

[TF] (µM)

0.6
0.4
0.2
0.0

0.8
1.0

no
rm

al
iz

ed
m

od
el

 tx
n

10
–4

10
-3

10
-2

10
-1

10
0

10
–4

10
-3

10
-2

10
-1

10
0

10
–4

10
-3

10
-2

10
-1

10
0

nH = 3.10
EC50= 0.01

nH = 1.02
EC50= 0.01

nH = 1.00 
EC50= 0.01

2

0.01 
µM

50
µM

5

0.01 
µM

50 
µM

5

0.5
µM

0.1
µM

ΔG
(kBT)

DNA

BINARY
TF-DNA 

TERNARY
clamp-TF-DNA

nc

nc

TA

nc

TA



855 CONFIGS
nc

Kt

Kp
Kp: 13 a�nities
Kt: 15 a�nities
nc:  2 -> 5

(+ clamp)

Kt: 15 a�nities
nc:  1 -> 5

(- clamp)

B

C D

ATc

GFP

CONFIGURATION SPACE

+

ONE-INPUTA

REMOVE:
high basal
(basal > 0.2)
low fold change
(max/basal < 2)

- 252 CONFIGS
603 CONFIGS

269 CONFIGS
(44.6%)

36 CONFIGS
(6%)

14 CONFIGS
(2.3%)

Figure S12. Using the model to explore cooperative complex modulation of dose response behavior. We used 
our thermodynamic model to map circuit dose response behavior onto configuration space for a single-input, 
two-node circuit where output is regulated by cooperative complex assembly. (a) Defining configuration space. 
ATc induces expression of a synTF (from the ncTET promoter), which forms an assembly with constitutively 
expressed clamp (pADH1), driving GFP reporter expression (left). Enumeration of available configurations for 
this assembly (855) and curation (removal of unproductive configurations) resulted in a final set of 603 (right). 
Using the model, dose responses were simulated for each configuration ([ATc] range = 10-1 - 104 ng/mL). Hill 
functions were fit to extract EC50 ([ATc] at half-maximal response) and nH (Hill coe�cient) values for each dose 
response. (b) The single-input behavior space of EC50 vs. nH. Each point corresponds to a specific circuit 
configuration (scatter). Above the morphospace is a parameter frequency analysis of values of (Kp, Kt, nc) for 
three di�erent regions of the scatter, corresponding to non-cooperative (left orange box), nonlinear (center box), 
and highly nonlinear responses (right box). Shown to the right is the range of values for each parameter’s 
frequency analysis distribution. A set of circuit configurations (red circles) distributed throughout the behavior space
were constructed and used to experimentally test the model predicted dose response behaviors. (c) Table 
summarizing the 14 circuit configurations highlighted in (b), and their corresponding model-predicted and 
experimentally-obtained nH values. (d) Correlation between model predictions and experimental data for the 14
circuit configurations. The top scatter compares nH, while the bottom compares EC50. MAE = mean absolute error.

nH

102

101

EC
50

 (n
g/

m
L) 103

100
1.5 2.0 2.5 3.0 3.5

non-
cooperative non-linear 

Kp

Kt

nc

Kp (µM)Kt (nM) nc

no clamp
no clamp
no clamp
no clamp
no clamp

13.6 1
13.6 2
13.6 3
13.6 4
13.6 5

1.9713.6 2
0.18224 3
0.18224 5
27.313.6 4
0.88224 5
0.8813.6 2
0.18143 3
1.97143 4
0.18143 5

1.53
1.53
1.53
1.53
1.53
1.84
2.06
2.94
1.54
2.26
2.03
2.38
1.91
3.51

1.16
1.42
1.58
1.36
1.45
1.84
2.54
3.46
1.71

2.47
1.81
2.53
2.89
2.83

Hill coe�cient (nH)assembly configuration
model experiment

ATc

pa
ra

m
et

er
fre

qu
en

cy

param. range

Kt (µM)

nc

Kp (µM)

10-2 10-1

10-1 100 101

0

0.5

0

0.5

0

0.5

1

1 2 3 4 5

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5 MAE = 0.3

MAE = 26.7 ng/mL

101
101

102

102

predicted nH

predicted EC50 (ng/mL)

m
ea

su
re

d 
n H

m
ea

su
re

d 
EC

50
 (n

g/
m

L)

1

2

3

11

8

10

9

12

5

4

7

6

14

13

1
2

3
11

8
10

9
12

5
4

7

6 14

13



nc2

Kt2

Kp2

nc1

Kt1

Kp1

B

use model to generate 
database of configuration 

I/O surfaces

A

two-input
decision surface

config. space
model

decision surfaces plot behavior space

map surfaces onto
morphospace based on 

KL divergence

more AND-like

more
OR-like

DKL (PAND||Qn)

D
KL

 (P
O

R||
Q

n)

compare database to 
reference distributions

compare to
target

distributions

0

0.2

0.4

0.6

0.8

1.0 norm
alized

m
odel txn

n

Q1 Q2

Q3

Q4

Q1(i)

Q2(i)

Q3(i)

Q4(i)
POR(i)

PAND(i)

Input 1

In
pu

t 2

C

8,424 CONFIGS

= 8,100 CONFIGS

= 324 CONFIGS

Kp1: 5 a�nities
Kt1: 6 a�nities
nc1:  1...3  

Kp2: 5 a�nities
Kt2: 6 a�nities
nc2:  1...3  

nc2

Kt2

Kp2

nc1

Kt1

Kp1

CONFIGURATION SPACETWO-INPUT CIRCUIT

ATc

GFP

EST

•

Kt1: 6 a�nities
nc1:  1...3  

Kt2: 6 a�nities
nc2:  1...3  •

DKL (P||Q) = Σ P(i) ln P(i)
Q(i)

HIGH
SMILARITY:
low DKL

LOW
SMILARITY:
high DKL

ideal (target)
distribution (P)

query
distributions (Q)

ou
tp

ut
 P

(i)

input (i)

ou
tp

ut
 Q

1(i
)

input (i)

ou
tp

ut
 Q

2(i
)

input (i)

Kullback-Liebler divergence

(+ clamp)

(- clamp)

Figure S13. Computationally probing the relationship between cooperative complex configuration and two-input 
logic. We used our thermodynamic model to map dose response behavior onto configuration space for a two-
input circuit, where output is regulated by assembly of two synTFs and a clamp (see Figure 2B). (a) For the two-input 
circuit, ATc and EST induce expression of two di�erent synTFs (from the ncTET and ncZEV promoters), while clamp 
expression is driven by pADH1. Enumerated configuration search space for the circuit (right) includes configurations 
with and without clamp. (b) Method for scoring circuit behavior based on an information theory-based comparison 
with an ideal (target) behavior. Kullback-Liebler divergence (DKL) uses informational entropy to measure the di�erence 
between two distributions: e.g., a reference distribution (P) representing a target behavior and a distribution (Q)
representing query data. Lower DKL values signify distributions that are more “similar” to the target. (c) Computational 
workflow for analyzing two-input logic behavior space. Progressing from left to right: for each configuration in the 
search space, normalized model transcriptional output (txnn) is simulated across ranges of [ATc] (96 data points, 10-1 - 
104 ng/mL) and [EST] (96 data points, 0.5-12.5 nM). Each member of the resulting decision surface database (Q1(i), Q2(i), 
Q3(i), etc.) is then compared to two ideal (target) distributions: a two-input AND gate (PAND(i)) and an OR gate (POR(i)). 
Specifically, DKL(PAND||Qn) and DKL(POR||Qn) are evaluated by comparing the four corner regions (red search area boxes, 
12 x 12 data points) of each model surface to those of the target AND and OR distributions, respectively. The full set of 
DKL(PAND||Qn) and DKL(POR||Qn) were plotted to generate a behavior space representing the degree to which each circuit 
configuration is AND-like or OR-like (see Figure 2B). 
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Figure S15. Experimental verification 
of two-input circuit behavior space. 
(a) A set of circuits were constructed to 
test the ability of our model to predict
steady state behavior for two-input 
circuits containing two di�eren synTF
species (left). We selected circuits 
broadly distributed throughout the 
predicted behavior space (right), 
including within regions thought to 
contain boolean-like behavior (AND-
and OR-gates). Circuits were induced 
with saturating concentrations of ATc 
and EST, grown for 18h, and measured 
by flow cytometry. (b) Model and
experimental fluorescence values were
normalized to calculated and observed
maximum outputs. Circuit configurations
highlighted in grey are shown in Fig. 2C.
(c) Correlation betwen model predictions
vs. experimental data for two-input circuits. 
The top scatter compares divergence (DKL) 
of model and data to an ideal AND-gate, 
while the bottom compares divergence 
(DKL) of model and data to an ideal OR-gate. 
DKL is computed as described in Figure S13.
MAE = mean absolute error. Green points
and corresponding MAE refer to five
configurations predicted to have the best
AND-like logic. Blue points and MAE 
refer to all other configurations.
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Figure S16. Microfluidic devices and methods for time-lapse experiments. (a) Workflow for microfluidic experiments. Yeast cells are 
loaded into a device, on-chip valves are used to select media and specify an induction time series, cells are imaged using time-lapse 
microscopy, and image analysis is performed to extract single-cell fluorescence trajectories. (b) Schematic of the multi-layer 
microfluidic devices used in this study, where flow layers are shown in grey and control layers in red. Cells loaded from inlets are 
trapped in cell chambers that have been fabricated to the height of a single monolayer of S. cerevisiae cells (light blue box, 
magnified in c). (c) Magnified view of the cell trapping chambers (left). Representative bright field and GFP images of the ncTET-GFP 
strain before and after Dox induction (right). Scale bar, 10 µm. (d) The variation in single-cell fluorescence trajectories measured in 
cells across di�erent devices (inter-device, top) and di�erent cell chambers (intra-device, middle). Fluorescence trajectories shown 
throughout this study represent the mean and standard deviation of many cells aggregated from multiple cell chambers (bottom). Dox
was used at 10 µg/mL. (e) Dose response curves for the ncTET expression system using the inducers ATc and Dox. Because of ATc 
photodegradation, Dox was used in all microfluidic time-lapse experiments.
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Figure S17. Experimental parameterization of 
dynamic model for circuits composed of synTF 
assemblies. (a) Application of the dynamic model 
to a three-node circuit (cascade). Dox-induced 
ncTET expression of TF1 from the first node 
assembles with constitutively expressed clamp 
(pADH1) at the second node, inducing expression 
TF2, which subsequently assembles with clamp 
to drive expression of GFP at the third node (left). 
Corresponding rate equations describe the 
change in species concentrations over time 
(right). ncTET expression of synTF1 is modeled 
with a Hill equation (“inducer DR” grey box). 
For downstream (DBM)miniCyc1 promoters 
that are regulated by synTF assemblies, such 
as pSynTF1 and pSynTF2, the thermodynamic 
model is used to compute the species 
production rate (“thermo model” grey boxes). 
kact = maximum transcriptional activation rate 
for each promoter; kbasal = basal promoter 
activity; kdeg = degradation/dilution rate of each 
protein. (b) Fitting dynamic model to time course 
data. Rate parameters were obtained from 
a global fit of the model to microfluidic time 
course data of strains harboring one-node, two-
node, and three-node test circuits (subjected 
to a Dox pulse of 14.5 or 16 h). Specific 
circuit configurations are shown to the left, fits 
(dots) to the experimental data (lines) are on the
right, and the extracted rate constants are below. 
(c) A relationship for scaling promoter 
activation rates, kact, as a function of synTF 
complex size, nc. Maximum fluorescence outputs 
were measured for two-node cascades having 
identical assembly configuration (shown to the 
right), but with nc = 2-5 (fold change is relative to 
maximum output for nc = 2 configuration). The 
data were fit to a logistic function, and used to 
extrapolate kact values for assemblies of 
arbitrary size. 
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Figure S18. Model-based construction of the circuit activation/deactivation behavior space. We used our model to map behavior 
space for activation/deactivation kinetics from assembly configuration space for two-node, three-node, and three-node with 
feedback (+FB) circuits (see also Figure 3B). (a) For all circuits, ATc (or Dox) is the input, inducing ncTET expression of a synTF, 
which assembles with constitutively expressed clamp (pADH1) to drive expression of either GFP (two-node) or a second synTF
(three-node and three-node+FB). The second synTF assembles with clamp to drive GFP expression and its own production (for 
three-node+FB) (left). Enumeration of the configuration search space for these circuits (right). This space includes configurations 
with and without clamp. (b) Simulation and curation of output traces for circuit configuration space. We used the model to 
simulate GFP output traces for the full space of circuit configurations in response to a 16 h Dox pulse (10 µg/mL) (grey, full space). 
Traces with weak basal or low fold activation (red) were filtered out, and the remaining traces normalized between 0 and 1 
(orange, green, blue). 
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Figure S19. Mapping temporal behavior 
onto activation/deactivation behavior
space. (a) The subspace of two-
node and three-node cascade 
configurations, highlighting 
configurations with clamp (pink) and 
without clamp (purple). Clamp 
configurations expand activation/ 
deactivation space. (b) Analysis of 
circuit configurations from six regions 
of the behavior space representing 
di�erent activation/deactivation 
behaviors: fast ON/slow OFF, slow 
ON/fast OFF, slow ON/slow OFF, fast 
ON/fast OFF, fast ON/memory, slow 
ON/memory. For each region, the 
configurations were selected based 
on τa and τd cuto� criteria, and 
are highlighted on the behavior space
using colors corresponding to the 
circuit type: two-node (orange), three-
node (green), three-node+FB (blue). 
Parameter frequency analyses of (Kp, 
Kt, nc) for these selected configurations 
are shown to the right of the behavior
space.
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Figure S20. Experimental verification of activation/
deactivation behavior space. (a)Testing model predictions
in strains harboring three-node cascades (with and
without feedback), predicted to have a wide range of
activation and deactivation times (red circles enumerate 
the 24 circuits on the morphospace). Grey region
highlights circuits whose dynamics are outside our
microfluidic measurement window. (b) Microfluidic
experiments were used to generate GFP trajectories for
each circuit in  response to a 16 h Dox pulse (10 µg/mL).
The measured GFP traces (green lines), model predictions
(green dots), and corresponding assembly configuration 
parameters for each circuit are shown below the behavior 
space. No FB, three-node cascade without feedback;
FB type 1, feedback architecture in which only synTF2
(purple dot) is in a clamp complex at the second circuit 
node; FB type 2, feedback architecture in which synTF1 
(blue dot) and synTF2 (purple dot) are in clamp complex 
together at the second circuit node. (c) Comparison of 
model predicted and experimentally measured activation 
(τa, left) and decay times (τd, right). Only circuits with 
measuable τd were included in the right scatter plot. 
MAE=mean absolute error. Green and blue dots refer to
three-node cascades with and without feedback,
respectively. (d) Distributions compare the di�erence
between model and data for six time points across
all measurements.
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Figure S21. Model-based search and analysis of 
persistence filtering. (a) Enumeration of 
configuration search space used for persistence
filtering. The space includes two-node and three-
node cascades and coherent feed-forward loop 
(CFFL) circuits. (b) Computational search for circuits 
that perform persistence filtering. For each 
configuration, we used the model to simulate 
output traces in response to a Dox pulse of 
varying lengths (TON = 30 - 3000 min) 
(left). A “temporal dose response” curve is 
generated for each circuit configuration by 
plotting maximum output amplitude for each 
pulse length, and used to obtain two filtering 
metrics: the pulse length threshold (input duration
at half-maximal response) and filtering sharpness 
(slope at threshold) (right). (c) Analysis of behavior
space of persistence filtering behavior: 
input duration threshold vs. filter sharpness (s) for 
each circuit configuration in the search. 
Examination of behavior space as a function of 
circuit type (left scatter) and synTF/clamp 
complex size (right scatter). Configurations 
highlighted in the left scatter are the “linear 
filter” and “sharp filter” circuits shown in Figure 
4A. Parameter frequency analyses of (Kp, Kt, nc) 
for selected nonlinear (top box callout) and 
linear (bottom box callout) filters are shown to 
the right of the behavior space, along with 
threshold and sharpness selection criteria. 
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Figure S22. Model-based search and analysis of frequency filtering behaviors. (a) Enumeration of configuration search space 
used for frequency filtering. The space includes two-node and three-node cascades (+/- feedback) and coherent feed-forward 
loop (CFFL) circuits (+/- feedback) . (b) Searching the configuration space for frequency filtering target behaviors: low-pass and 
band-stop filters. For each circuit configuration, the model was used to simulate output traces in response to periodic Dox pulses 
of varying frequency (periods ranging from T = 90 to 9000 min) (left). Maximum amplitudes of the resulting traces are used to 
construct frequency response curves for each circuit (right). Low-pass and band-stop filters are then screened based on two 
di�erent metrics extracted from this curve: the ratio of low to high frequency amplitudes (low/high freq. gain, low-pass) and the 
ratio of minimum to high frequency amplitudes (min/high freq. gain, band-stop). (c) Computational screen and analysis of low-
pass and band-stop filtering circuit configurations. Progressing from left to right: We searched a configuration space 
corresponding to five circuit motifs. Frequency response curves were generated for the full configuration space, and binned 
into low-pass (green curves, low/high freq. gain > 5) or band-stop (blue and orange curves, min/high freq. gain > 2). Circuit
configurations not meeting either criteria were discarded (red curves). Parameter frequency analyses of (Kp, Kt, nc) for the
selected configurations are shown to the right. Bold black curves show the predicted response of circuit configs in Fig. 4B.
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Figure S23. Experimental verification of frequency response behavior of low-pass and band-stop filter circuits.
Circuit configurations computationally predicted to display low-pass (red) and band-stop (green) filtering were
constructed (left), and their frequency responses were experimentally obtained using microfluidic experiments (right).
Strains harboring the low-pass and band-stop circuits, driving expression of mKate and GFP respectively, were
co-cultured in the 12S6T device (Fig. S16B), and subjected to periodic square wave pulses of Dox (10 µg/mL, 33% duty
cycle) for di�erent frequencies. mKate and GFP traces (mean and standard deviation) for each circuit. Frequencies in
bold are the two frequency regimes highlighted in Fig 4B.
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Figure S24. Quantification of cell size and growth rate for strains analyzed in microfluidic devices.
(a) Mean cell area (top) and cell area coe�cient of variation (bottom) quantified over time using segmentation 
software (CellTracer, see Materials and Methods) for all 24 strains analyzed in Figure S20. (b) Distribution of 
growth rates for all strains analyzed in Figure S20. Growth rates for each strain were calculated using cell 
counts at each time point. The average growth rate across all strains (0.0029 min-1) is indicated (red dashed line), 
along with the model dilution rate for GFP (0.003 min-1, black dashed line). (c) Comparison of average growth
rate and circuit dynamics for all strains analyzed in Figure S20. Linear regression with associated r-squared
values shown in red.
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TABLE S1: Plasmid Table 
 
FIGURE PLASMID # PARENT PROMOTER ORF 

1C 

pCB342 pMAL-c5 Ptac MBP-43-8(low)-syn. lig.(S5) 
pCB348 pMAL-c5 Ptac MBP-43-8(low)-syn. lig.(no bind) 
pCB376 pMAL-c5 Ptac MBP-2x syn. clamp 
pCB428 pMAL-c5 Ptac MBP-3x syn. clamp 

1E 

pN8 pRS406 p(nc=2, 43-8 DBM1)minCyc1 GFP 
CB269 pRS406 p(nc=2, 43-8 DBM2)minCyc1 GFP 

pCB277 pRS406 p(nc=3, 43-8 DBM1)minCyc1 GFP 
pCB228 pRS406 p(nc=4, 43-8 DBM1)minCyc1 GFP 
pCB298 pRS304 pNcTET 43-8(low)-syn. lig(S5) 
pCB300 pRS304 pNcTET 43-8(low)-syn. lig(S6) 
pCB302 pRS304 pNcTET 43-8(low)-syn. lig(S4) 
pCB706 pRS304 pNcTET 43-8(high)-syn. lig(S5) 
pN187 pRS605 pNcZEV 2x syn. clamp 

pCB397 pRS605 pNcZEV 3x syn. clamp 
pCB398 pRS605 pNcZEV 4x syn. clamp 

2B 

pCB707 pRS406 p(nc=1, 43-8 DBM1)minCyc1 GFP 
pN8 pRS406 p(nc=2, 43-8 DBM1)minCyc1 GFP 

pN18 pRS406 p(n=3, 43-8 DBM3)minCyc1 GFP 
pCB280 pRS406 p(n=5, 43-8 DBM3)minCyc1 GFP 
pCB281 pRS406 p(nc=5, 43-8 DBM2)minCyc1 GFP 
pCB298 pRS304 pNcTET 43-8(low)-syn. lig(S5) 
pCB393 pRS304 pNcTET 43-8(low)-syn. lig(S2) 
pCB245 pRS605 pADH1 2x syn. clamp 
pCB247 pRS605 pADH1 3x syn. clamp 
pCB266 pRS605 pADH1 5x syn. clamp 

2C 

pCB726 pRS406 p(nc=3, 43-8 DBM3, nc=3, 42-10 DMB7)minCyc1 GFP  
pCB730 pRS406 p(nc=3, 43-8 DBM2, nc=3, 42-10 DMB7)minCyc1 GFP  
pCB723 pRS406 p(nc=2, 43-8 DBM2, nc=2, 42-10 DMB5)minCyc1 GFP  
pCB729 pRS406 p(nc=3, 43-8 DBM2, nc=3, 42-10 DMB6)minCyc1 GFP  
pCB302 pRS304 pNcTET 43-8(low)-syn. lig(S4) 
pCB393 pRS304 pncTET 43-8(low)-syn. lig(S2) 
pCB395 pRS304 pncTET 43-8(low)-syn. lig(S1) 
pN288 pRS304 pNcZEV 42-10(low)-syn. lig.(S4) 

pCB515 pRS304 pNcZEV 42-10(low)-syn. lig.(S2) 
pCB516 pRS304 pNcZEV 42-10(low)-syn. lig.(S1) 
pCB263 pRS605 pADH1 4x syn. clamp 
pCB266 pRS605 pADH1 5x syn. clamp 
pCB564 pRS605 pADH1 6x syn. clamp 

3A 

pN8 pRS406 p(nc =2, 43-8 DBM1)minCyc1 GFP 
pCB278 pRS406 p(nc =4, 43-8 DBM3)minCyc1 GFP 
pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 
pCB263 pRS605 pADH1 4x syn. clamp 

3B 

pN367 pRS306 p(nc=4, 42-10 DBM2, nc =3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN410 pRS306 p(nc=2, 42-10 DBM1, nc=2, 43-8 DBM2)minCyc1 42-10(low)-syn. lig.(S2) 
pN488 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN489 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S4) 
pN464 pRS306 p(nc=4, 43-8 DBM3)minCyc1 42-10(low)-syn. lig.(S4) 
pN369 pRS306 p(nc=4, 42-10 DBM4, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN281 pRS304 pNcTET 43-8(low)-no lig. 

pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 
pCB301 pRS304 pNcTET 43-8(low)-syn. lig.(S4) 
pCB263 pRS605 pADH1 4x syn. clamp 
pN286 pRS603 p(nc=4, 42-10 DBM1)minCyc1 GFP 

4A 
pN8 pRS406 p(nc=2, 43-8 DBM1)minCyc1 GFP 

pN468 pRS306 p(nc=5, 43-8 DBM3)minCyc2 42-10(low)-syn. lig.(S2) 
pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 



pCB266 pRS605 pADH1 5x syn. clamp 
pN287 pRS603 p(nc=5, 42-10 DBM1)minCyc1 GFP 

4B/S24 

pN463 pRS306 p(nc=4, 43-8 DBM3)minCyc1 42-10(low)-syn. lig.(S5) 
pN409 pRS306 p(nc=2, 42-10 DBM1, nc=2, 43-8 DBM2)minCyc1 42-10(low)-syn. lig.(S5) 

pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 
pCB301 pRS304 pNcTET 43-8(low)-syn. lig.(S4) 
pCB263 pRS605 pADH1 4x syn. clamp 
pN451 pRS603 p(nc=2, 43-8 DBM2, nc=2, 42-10 DBM1)minCyc1 mKate 
pN400 pRS603 p(nc=2, 43-8 DBM2, nc=2, 42-10 DBM1)minCyc1 GFP 

S2B,C 

pCB342 pMAL-c5 Ptac MBP-43-8(low)-syn. lig.(S5) 
pCB347 pMAL-c5 Ptac MBP-43-8(high)-syn. lig.(S5) 

pN93 pMAL-c5 Ptac MBP-42-10(low)-syn. lig.(S5) 
pN313 pMAL-c5 Ptac MBP-42-10(high)-syn. lig.(S5) 

S3B,C,D 

pCB378 pMAL-c5 Ptac MBP-syn. 
pCB425 pMAL-c5 Ptac MBP-erb. 
pCB380 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S1) 
pCB381 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S2) 
pCB382 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S3) 
pCB384 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S4) 
pCB385 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S5) 
pCB386 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S6) 
pCB387 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S7) 
pCB379 pMAL-c5 Ptac MBP-43-8(low)-syn. lig. (S5) 

S4A 

pRS406 pRS406 n/a n/a 
pL329 pRS304 pNcTET GFP 
pL330 pRS304 NL-TET GFP 

pCB702 pRS603 pNcZEV GFP 
pCB703 pRS603 pADH1 GFP 
pCB704 pRS605 pNcTET GFP 
pCB705 pRS605 pADH1 GFP 

S4B pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 

S4D 

pN20 pRS406 p(n=2, 43-8 DBM1)minCyc1 GFP 
pN187 pRS605 pNcZEV 2x syn. clamp 
pN496 pRS605 pTEF1 97-4 ZEV 
pN498 pRS605 pNcZEV 43-8_4x, lig S5 (5GS) 

S5 
pCB342 pMAL-c5 Ptac MBP-43-8(low)-syn. lig.(S5) 
pCB429 pMAL-c5 Ptac 1x syn. 

S6 

pN8 pRS406 p(nc=2, 43-8 DBM1)minCyc1 GFP 
pCB230 pRS605 pADH1 2x syn. clamp (5GS) 
pCB244 pRS605 pADH1 2x syn. clamp (10GS) 
pCB245 pRS605 pADH1 2x syn. clamp (20GS) 
pCB303 pRS304 pNcTET 43-8(low)-syn. lig. (S6) (0GS) 
pCB300 pRS304 pNcTET 43-8(low)-syn. lig (S6) (5GS) 
pCB299 pRS304 pNcTET 43-8(low)-syn. lig. (S6) (10GS) 
pL372 pRS304 pNcTET 43-8(low)-syn. lig. (S5) (0GS) 

pCB298 pRS304 pNcTET 43-8(low)-syn. lig. (S5) (5GS) 
pCB304 pRS304 pNcTET 43-8(low)-syn. lig. (S5) (10GS) 
pCB303 pRS304 pNcTET 43-8(low)-syn. lig. (S4) (0GS) 
pCB301 pRS304 pNcTET 43-8(low)-syn. lig. (S4) (5GS) 
pCB267 pRS304 pNcTET 43-8(low)-syn. lig. (S4) (10GS) 

S12C 

pCB707 pRS406 p(nc=1, 43-8 DBM1)minCyc1 GFP 
pN8 pRS406 p(n=2, 43-8 DBM1)minCyc1 GFP 

pN27 pRS406 p(n=3, 43-8 DBM1)minCyc1 GFP 
pN20 pRS406 p(n=4, 43-8 DBM1)minCyc1 GFP 

pCB282 pRS406 p(n=5, 43-8 DBM1)minCyc1 GFP 
pN18 pRS406 p(n=3, 43-8 DBM3)minCyc1 GFP 

pCB280 pRS406 p(n=5, 43-8 DBM3)minCyc1 GFP 
pCB276 pRS406 p(n=3, 43-8 DBM2)minCyc1 GFP 
pCB279 pRS406 p(n=4, 43-8 DBM2)minCyc1 GFP 



pCB281 pRS406 p(n=5, 43-8 DBM2)minCyc1 GFP 
pCB298 pRS304 pNcTET 43-8(low)-syn. lig(S5) 
pCB300 pRS304 pNcTET 43-8(low)-syn. lig(S6) 
pCB393 pRS304 pNcTET 43-8(low)-syn. lig(S2) 
pCB301 pRS304 pNcTET 43-8(low)-syn. lig(S4) 
pCB245 pRS605 pADH1 2x syn. clamp 
pCB247 pRS605 pADH1 3x syn. clamp 
pCB263 pRS605 pADH1 4x syn. clamp 
pCB266 pRS605 pADH1 5x syn. clamp 

S15 

pCB721 pRS406 p(nc=2, 43-8 DBM3, nc=2, 42-10 DMB6)minCyc1 GFP 
pCB722 pRS406 p(nc=2, 43-8 DBM3, nc=2, 42-10 DMB5)minCyc1 GFP 
pCB723 pRS406 p(nc=2, 43-8 DBM2, nc=2, 42-10 DMB5)minCyc1 GFP  
pCB724 pRS406 p(nc=2, 43-8 DBM2, nc=2, 42-10 DMB6)minCyc1 GFP  
pCB725 pRS406 p(nc=3, 43-8 DBM3, nc=2, 42-10 DMB6)minCyc1 GFP  
pCB726 pRS406 p(nc=3, 43-8 DBM3, nc=3, 42-10 DMB7)minCyc1 GFP  
pCB727 pRS406 p(nc=2, 43-8 DBM1, nc=2, 42-10 DMB5)minCyc1 GFP  
pCB728 pRS406 p(nc=2, 43-8 DBM1, nc=3, 42-10 DMB5)minCyc1 GFP  
pCB729 pRS406 p(nc=3, 43-8 DBM2, nc=3, 42-10 DMB6)minCyc1 GFP  
pCB730 pRS406 p(nc=3, 43-8 DBM2, nc=3, 42-10 DMB7)minCyc1 GFP  
pCB731 pRS406 p(nc=2, 43-8 DBM2, nc=2, 42-10 DBM4)minCyc1 GFP  
pCB732 pRS406 p(nc=3, 43-8 DBM3, nc=2, 42-10 DBM1)minCyc1 GFP 
pCB302 pRS304 pNcTET 43-8(low)-syn. lig(S4) 
pCB393 pRS304 pncTET 43-8(low)-syn. lig(S2) 
pCB395 pRS304 pncTET 43-8(low)-syn. lig(S1) 
pN288 pRS603 pNcZEV 42-10(low)-syn. lig.(S4) 

pCB515 pRS603 pNcZEV 42-10(low)-syn. lig.(S2) 
pCB516 pRS603 pNcZEV 42-10(low)-syn. lig.(S1) 
pCB263 pRS605 pADH1 4x syn. clamp 
pCB266 pRS605 pADH1 5x syn. clamp 
pCB564 pRS605 pADH1 6x syn. clamp 

S16D, E pRS406 pRS406 empty empty 
pL329 pRS304 multiple (see Fig. S4) multiple (see Fig. S4) 

S17B 

pRS406 pRS406 empty GFP 
pN8 pRS406 p(nc=2, 43-8 DBM1)minCyc1 GFP 

pN491 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(low)-no lig. 
pN488 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pL329 pRS304 pNcTET GFP 

pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 
pN281 pRS304 pNcTET 43-8(low)-no lig. 
pN286 pRS603 p(nc=4, 42-10 DBM1)minCyc1 GFP 

S17C 

pN8 pRS406 p(nc=2, 43-8 DBM1)minCyc1 GFP 
pCB277 pRS406 p(nc=3, 43-8 DBM1)minCyc1 GFP 

pN20 pRS406 p(nc=4, 43-8 DBM1)minCyc1 GFP 
pCB282 pRS406 p(nc=5, 43-8 DBM1)minCyc1 GFP 
pCB301 pRS304 pNcTET 43-8(low)-syn. lig.(S4) 
pCB245 pRS605 pADH1 2x syn. clamp 
pCB247 pRS605 pADH1 3x syn. clamp 
pCB263 pRS605 pADH1 4x syn. clamp 
pCB266 pRS605 pADH1 5x syn. clamp 

S20 

pN490 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(high)-syn. lig.(S5) 
pN488 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN489 pRS406 p(nc=4, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S4) 
pN350 pRS306 p(nc=4, 42-10 DBM3, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN354 pRS306 p(nc=4, 42-10 DBM2, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN355 pRS306 p(nc=4, 42-10 DBM2, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN359 pRS306 p(nc=4, 42-10 DBM4, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN360 pRS306 p(nc=5, 42-10 DBM4, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN361 pRS306 p(nc=5, 42-10 DBM4, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN364 pRS306 p(nc=4, 42-10 DBM3, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 



pN366 pRS306 p(nc=4, 42-10 DBM2, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN367 pRS306 p(nc=4, 42-10 DBM2, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN368 pRS306 p(nc=4, 42-10 DBM4, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN369 pRS306 p(nc=4, 42-10 DBM4, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN353 pRS306 p(nc=5, 42-10 DBM3, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN365 pRS306 p(nc=4, 42-10 DBM3, nc=3, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S2) 
pN409 pRS306 p(nc=2, 42-10 DBM1, nc=2, 43-8 DBM2)minCyc1 42-10(low)-syn. lig.(S5) 
pN410 pRS306 p(nc=2, 42-10 DBM1, nc=2, 43-8 DBM2)minCyc1 42-10(low)-syn. lig.(S2) 
pN348 pRS306 p(nc=2, 42-10 DBM1, nc=2, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN344 pRS306 p(nc=3, 42-10 DBM1, nc=1, 43-8 DBM1)minCyc1 42-10(low)-syn. lig.(S5) 
pN464 pRS306 p(nc=4, 43-8 DBM3)minCyc1 42-10(low)-syn. lig.(S4) 
pN463 pRS306 p(nc=4, 43-8 DBM3)minCyc1 42-10(low)-syn. lig.(S5) 
pN464 pRS306 p(nc=4, 43-8 DBM3)minCyc1 42-10(low)-syn. lig.(S4) 
pN468 pRS306 p(nc=5, 43-8 DBM3)minCyc1 42-10(low)-syn. lig.(S2) 
pN281 pRS304 pNcTET 43-8(low)-no lig. 

pCB298 pRS304 pNcTET 43-8(low)-syn. lig.(S5) 
pCB301 pRS304 pNcTET 43-8(low)-syn. lig.(S4) 
pCB263 pRS605 pADH1 4x syn. clamp 
pCB266 pRS605 pADH1 5x syn. clamp 
pN286 pRS603 p(nc=4, 42-10 DBM1)minCyc1 GFP 
pN287 pRS603 p(nc=5, 42-10 DBM1)minCyc1 GFP 

 
 
 
 
 
TABLE S2: Yeast Strains 
 

    Marker Loci 
FIGURE STRAIN ID URA3 TRP4 LEU2 HIS3 

1E 

sCB01 pN8 pCB298 pN187   
sCB02 pN8 pCB300 pN187   
sCB03 pN8 pCB302 pN187   
sCB04 pCB277 pCB298 pCB397   
sCB05 pCB228 pCB298 pCB398   
sCB06 CB269 pCB298 pN187   
sCB07 pN8 pCB706 pN187   

2A 

sCB08 pCB707 pCB298     
sCB09 pN8 pCB298 pCB245   
sCB10 pN18 pCB393 pCB247   
sCB11 pCB280 pCB393 pCB266  
sCB56 pCB281 pCB393 pCB266   

2B 

sCB12 pCB726 pCB302 pCB564 pN288 
sCB13 pCB730 pCB393 pCB564 pCB515 
sCB14 pCB723 pCB393 pCB263 pCB515  
sCB15 pCB729 pCB395 pCB564 pCB516 

3A sCB16 pN8 pCB298     
sCB17 pCB278 pCB298 pCB263   

3B 

yN483 pN367 pN281 pCB263 pN286 
yN143 pN410 pCB301 pCB263 pN286 
yN005 pN488 pN281 pCB263 pN286 
yN006 pN489 pN281 pCB263 pN286 
yN233 pN464 pCB298 pCB263 pN286 
yN485 pN369 pN281 pCB263 pN286 

4A sCB18 pN8 pCB298     
yN267 pN468 pCB298 pCB266 pN287 

4B/S24 yN473 pN463 pCB298 pCB263 pN451 
yN140 pN409 pCB301 pCB263 pN400 

S4A 
sCB19 pRS406 pL329     
sCB20 pRS406 pL330     
sCB21     pCB704   



sCB22       pCB702 
sCB23     pCB705   
sCB24       pCB703 
sCB25 pRS406 pCB298     

S4D 

yN701 pN20      
yN711 pN20   pN187  
yN712 pN20   pN496  
yN757 pN20   pN498  

S6 

yN490 pN8 pCB303 pCB230   
yN491 pN8 pCB300 pCB230   
yN492 pN8 pCB299 pCB230   
yN493 pN8 pL372 pCB230   
yN494 pN8 pCB298 pCB230   
yN495 pN8 pCB304 pCB230   
yN496 pN8 pCB303 pCB230   
yN497 pN8 pCB301 pCB230   
yN498 pN8 pCB267 pCB230   
yN499 pN8 pCB303 pCB244   
yN500 pN8 pCB300 pCB244   
yN501 pN8 pCB299 pCB244   
yN502 pN8 pL372 pCB244   
yN503 pN8 pCB298 pCB244   
yN504 pN8 pCB304 pCB244   
yN505 pN8 pCB303 pCB244   
yN506 pN8 pCB301 pCB244   
yN507 pN8 pCB267 pCB244   
yN508 pN8 pCB303 pCB245   
yN509 pN8 pCB300 pCB245   
yN510 pN8 pCB299 pCB245   
yN511 pN8 pL372 pCB245   
yN512 pN8 pCB298 pCB245   
yN513 pN8 pCB304 pCB245   
yN514 pN8 pCB303 pCB245   
yN515 pN8 pCB301 pCB245   
yN516 pN8 pCB267 pCB245   

S12C 

sCB08 pCB707 pCB298    
yN715 pN8 pCB298    
yN716 pN27 pCB298    
yN717 pN20 pCB298    
yN718 pCB282 pCB298    
sCB09 pN8 pCB298 pCB245  
sCB10 pN18 pCB393 pCB247  
sCB11 pCB280 pCB393 pCB266  
sCB51 pN20 pCB300 pCB263  
sCB52 pCB280 pCB301 pCB266  
sCB53 pN8 pCB301 pCB245  
sCB54 pCB276 pCB393 pCB247  
sCB55 pCB279 pCB298 pCB263  
sCB56 pCB281 pCB393 pCB266  

S15 

sCB26 pCB721 pCB302 pCB263 pN288  
sCB27 pCB721 pCB393 pCB263 pCB515  
sCB28 pCB722 pCB302 pCB263 pN288 
sCB29 pCB722 pCB393 pCB263 pCB515  
sCB30 pCB723 pCB302 pCB263 pN288 
sCB14 pCB723 pCB393 pCB263 pCB515  
sCB31 pCB724 pCB302 pCB263 pN288 
sCB32 pCB724 pCB393 pCB263 pCB515  
sCB33 pCB725 pCB302 pCB266 pN288 
sCB34 pCB725 pCB393 pCB266 pCB515  
sCB12 pCB726 pCB302 pCB564 pN288 
sCB35 pCB726 pCB393 pCB564 pCB515  
sCB36 pCB727 pCB302 pCB263 pN288 
sCB37 pCB727 pCB393 pCB263 pCB515 
sCB38 pCB728 pCB302 pCB266 pN288 
sCB39 pCB728 pCB393 pCB266 pCB515 



sCB40 pCB729 pCB302 pCB564 pN288 
sCB41 pCB729 pCB393 pCB564 pCB515 
sCB15 pCB729 pCB395 pCB564 pCB516 
sCB42 pCB730 pCB302 pCB564 pN288 
sCB13 pCB730 pCB393 pCB564 pCB515 
sCB43 pCB731 pCB302 pCB263 pN288 
sCB44 pCB731 pCB393 pCB263 pCB515 
sCB45 pCB732 pCB302 pCB266 pN288 
sCB46 pCB732 pCB393 pCB266 pCB515 

S16D,E sCB30 pRS406 pL329     

S17B 

sCB31 pRS406 pL329     
sCB32 pN8 pCB298     
yN474 pN491 pN281   pN286 
yN005 pN488 pN281 pCB263 pN286 

S17C 

sCB47 pN8 pCB301 pCB245   
sCB48 pCB277 pCB301 pCB247   
sCB49 pN20 pCB301 pCB263   
sCB50 pCB282 pCB301 pCB266   

S20 

yN004 pN488 pN281 pCB263 pN286 
yN005 pN489 pN281 pCB263 pN286 
yN006 pN490 pN281 pCB263 pN286 
yN475 pN350 pN281 pCB263 pN286 
yN476 pN354 pN281 pCB263 pN286 
yN477 pN355 pN281 pCB263 pN286 
yN478 pN359 pN281 pCB263 pN286 
yN479 pN360 pN281 pCB266 pN287 
yN480 pN361 pN281 pCB266 pN287 
yN481 pN364 pN281 pCB263 pN286 
yN482 pN366 pN281 pCB263 pN286 
yN483 pN367 pN281 pCB263 pN286 
yN484 pN368 pN281 pCB263 pN286 
yN485 pN369 pN281 pCB263 pN286 
yN486 pN353 pN281 pCB266 pN287 
yN487 pN365 pN281 pCB263 pN286 
yN137 pN409 pCB298 pCB263 pN286 
yN143 pN410 pCB301 pCB263 pN286 
yN488 pN348 pCB298 pCB263 pN286 
yN489 pN344 pCB298 pCB263 pN286 
yN233 pN464 pCB298 pCB263 pN286 
yN241 pN463 pCB301 pCB263 pN286 
yN245 pN464 pCB301 pCB263 pN286 
yN288 pN468 pCB301 pCB266 pN287 

 
 
 
 
 
 
Table S3. Data Fitting 
 

Name of Fitting Function Data Type Output Parame-
ters MATLAB solver Associated 

Figures 

Hillfun.m (hill function) Anisotropy or fluores-
cence dose response Hill parameters least squares 

1C, 2A, 3A, 
S2B, S3B, 
S5, S11, 
S12, S16E 

Anisotropy_Fit.m (Wang fit, 
see reference 4) 

fluor. anisotropy competi-
tion 

protein-
competitor affinity least squares S2C, S3C,D 

MeanTxn_OneTF.m thermodynamic model for 
a one TF assembly 

[TF], [Clamp] 
binding affinities least squares 1E 



polyfitB.m (polynomial de-
gree of 1) 

thermodynamic model 
parameter extrapolation 

slope and inter-
cept of linear fit polynomial fit S10 

fit_logistic.m (logistic func-
tion) 

promoter rate extrapola-
tion 

logistic function 
variables least squares S17C 

OneNode.m, TwoNode.m, 
ThreeNode.m  microfluidic time courses kinetic rates Pattern Search S17B 

 
 
Table S4. Simulation Functions 
 

Name of Custom 
Function 

Function 
Output Input Parameters Associated 

Figures Function Description 

MeanTxn_OneTF.m 
one-input 
dose re-
sponse 

[TF], [Clamp], n, 
binding affinities 2A, S11, S12 

uses protein concentrations and 
thermos. parameters to calcu-
late mean transcriptional rate 
for a 1 TF, 1 Clamp assembly 

MeanTxn_TwoTF.m 
two-input 
decision 
surface 

[TF1], [TF2], 
[Clamp], n, binding 
affinities 

2B, S14, S15 

uses protein concentrations and 
thermo. parameters to calculate 
mean transcriptional rate for a 2 
TF, 1 Clamp assembly 

OneNode.m 
one-node 
cascade 
dynamics 

[GFP] @t=0, binding 
affinities, kinetic 
rates, Dox input 

S17 
predicts dynamics of a one 
node circuit for a defined Dox 
input over time 

TwoNode.m 
two-node 
cascade 
dynamics 

[TF1],[GFP] @t=0, 
binding affinities, 
kinetic rates, Dox 
input 

3A,B, 4A, 
S18-22 

predicts dynamics of a two 
node circuit for a defined Dox 
input over time 

ThreeNode.m 
three-node 
cascade 
dynamics 

[TF1],[TF2],[GFP] 
@t=0, binding affini-
ties, kinetic rates, 
Dox input 

3B, 4A, S18-
22 

predicts dynamics of a three 
node circuit for a defined Dox 
input over time 

ThreeNodeFB.m 

three-node 
cascade + 
FB dynam-
ics 

[TF1],[TF2],[GFP] 
@t=0, binding affini-
ties, kinetic rates, 
Dox input 

3B, S18-19, 
S22 

predicts dynamics of a three 
node + FB circuit for a defined 
Dox input over time 

CFFL.m CFFL dy-
namics 

[TF1],[TF2],[GFP] 
@t=0, binding affini-
ties, kinetic rates, 
Dox input 

S21-23 
predicts dynamics of a CFFL 
circuit for a defined Dox input 
over time 

CFFLFB.m CFFL + FB 
dynamics 

[TF1],[TF2],[GFP] 
@t=0, binding affini-
ties, kinetic rates, 
Dox input 

S22-23 
predicts dynamics of a CFFL + 
FB circuit for a defined Dox in-
put over time 

 
 
  



Supplementary Movies 

Movies S1 and S2. Time lapse fluorescence microscopy of yeast strains harboring 12 engi-

neered circuits in two distinct microfluidic chambers (movies S1 and S2, respectively). GFP fluo-

rescence (top) is shown in cyan and tracks the activation/deactivation time courses of the cir-

cuits following a 16 h Dox induction pulse (10 µg/mL), with corresponding phase contrast time 

lapse (below). Circuit configurations were selected from the dynamic behavior space of Fig. 3 

and ordered by their experimentally determined deactivation time (td) from shortest to longest. 

From left to right: circuits correspond to #1, 3, 14, 17, 12, 18 (top), and 11, 13, 8, 9, 15, 16 (bot-

tom) listed in Figure S20. Scale bar = 10 µm. 
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